Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study

被引:167
作者
Wang, Zhenpo [1 ,2 ]
Yuan, Jing [1 ,2 ]
Zhu, Xiaoqing [1 ,2 ]
Wang, Hsin [3 ]
Huang, Lvwei [4 ]
Wang, Yituo [5 ]
Xu, Shiqi [1 ,2 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[3] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[4] Shanghai Jieneng Automot Technol Co Ltd, Shanghai 201804, Peoples R China
[5] China North Vehicle Res Inst, State Assigned Elect Vehicle Power Battery Testin, Beijing 100072, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2021年 / 55卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion battery; Cathode materials; Overcharge; Thermal runaway; Overcharge tolerance; Safety assessment; IN-SITU DETECTION; LI(NI0.6CO0.2MN0.2)O-2 CATHODE; FAILURE-MECHANISM; POUCH CELLS; HIGH-POWER; ABUSE; BATTERIES; STABILITY; LIFEPO4;
D O I
10.1016/j.jechem.2020.07.028
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this paper, overcharge behaviors and thermal runaway (TR) features of large format lithium-ion (Li-ion) cells with different cathode materials (LiFePO4 LFP), Li[Ni1/3Co1/3Mn1/3]O-2 (NCM111), Li [Ni0.6Co0.2Mn0.2]O-2 (NCM622) and Li[Ni0.8Co0.4Mn0.1]O-2 (NCM811)) were investigated. The results showed that, under the same overcharge condition, the TR of LFP Li-ion cell occurred earlier compared with the NCM Li-ion cells, indicating its poor overcharge tolerance and high TR risk. However, when TR occurred, LFP Li-ion cell exhibited lower maximum temperature and mild TR response. All NCM Li-ion cells caught fire or exploded during TR, while the LFP Li-ion cell only released a large amount of smoke without fire. According to the overcharge behaviors and TR features, a safety assessment score system was proposed to evaluate the safety of the cells. In short, NCM Li-ion cells have better performance in energy density and overcharge tolerance (or low TR risk), while LFP Li-ion cell showed less severe response to overcharging (or less TR hazards). For NCM Li-ion cells, as the ratio of nickel in cathode material increases, the thermal stability of the cathode materials becomes poorer, and the TR hazards increase. Such a comparison study on large format Li-ion cells with different cathode materials can provide deeper insights into the overcharge behaviors and TR features, and provide guidance for engineers to reasonably choose battery materials in automotive applications. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [41] Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions
    Dongxu Ouyang
    Yaping He
    Mingyi Chen
    Jiahao Liu
    Jian Wang
    Journal of Thermal Analysis and Calorimetry, 2018, 132 : 65 - 75
  • [42] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [43] Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries
    Mao, Ning
    Wang, Zhi-Rong
    Chung, Yi-Hong
    Shu, Chi-Min
    APPLIED THERMAL ENGINEERING, 2019, 163
  • [44] Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions
    Ouyang, Dongxu
    He, Yaping
    Chen, Mingyi
    Liu, Jiahao
    Wang, Jian
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 132 (01) : 65 - 75
  • [46] Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge
    Wang, Cong-jie
    Zhu, Yan-li
    Gao, Fei
    Bu, Xin-ya
    Chen, Heng-shuai
    Quan, Ting
    Xu, Yi-bo
    Jiao, Qing-jie
    APPLIED ENERGY, 2022, 328
  • [47] Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
    Yang, Xinwei
    Wang, Hewu
    Li, Minghai
    Li, Yalun
    Li, Cheng
    Zhang, Yajun
    Chen, Siqi
    Shen, Hengjie
    Qian, Feng
    Feng, Xuning
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (11):
  • [48] Thermal runaway suppression effect of water mist on 18650-cylinder lithium-ion batteries with different cathode materials
    Liu, Xiaozhao
    Xu, Dengji
    Meng, Xiaokai
    Lu, Zhumao
    Chen, Yanjun
    Liu, Changcheng
    Huang, Que
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 35
  • [49] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [50] Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review
    Duh, Yih-Shing
    Sun, Yujie
    Lin, Xin
    Zheng, Jiaojiao
    Wang, Mingchen
    Wang, Yongjing
    Lin, Xiaoying
    Jiang, Xiaoyu
    Zheng, Zhigong
    Zheng, Shuo
    Yu, Gending
    JOURNAL OF ENERGY STORAGE, 2021, 41