Hybrid ensemble intelligent model based on wavelet transform, swarm intelligence and artificial neural network for electricity demand forecasting
被引:63
作者:
Jnr, Eric Ofori-Ntow
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, Portugal
Univ Mines & Technol, Fac Engn, POB 237, Tarkwa, GhanaUniv Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, Portugal
Jnr, Eric Ofori-Ntow
[1
,2
]
Ziggah, Yao Yevenyo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mines & Technol, Fac Mineral Resource & Technol, POB 237, Tarkwa, GhanaUniv Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, Portugal
Ziggah, Yao Yevenyo
[3
]
Relvas, Susana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, PortugalUniv Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, Portugal
Relvas, Susana
[1
]
机构:
[1] Univ Lisbon, Inst Super Tecn, CEG IST, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Univ Mines & Technol, Fac Engn, POB 237, Tarkwa, Ghana
[3] Univ Mines & Technol, Fac Mineral Resource & Technol, POB 237, Tarkwa, Ghana
Availability of electrical energy affects many facets of an entire economy of a country. This has made short-term electrical load forecasting an important area in recent years for policy makers and academic researchers. However, it has been found that the actual load series exhibit some complex behaviours which are often characterised by nonlinearity, nonstationarity, and temporal variations. In this study, a three-level hybrid ensemble short-term load forecasting method consisting of Discrete Wavelet Transform (DWT), Particle Swarm Optimization (PSO), and Radial Basis Function Neural Network (RBFNN) is proposed. The DWT is applied to decompose the data to get a well-behaved requisite series for forecasting since the data becomes stable before using PSO. PSO is used to obtain the required optimal adjustable parameters of the RBFNN for the forecasting. The proposed hybrid ensemble method (DWT-PSO-RBFNN) was evaluated using Ghana Grid Company daily average demand data from 1 st December 2018 to 30th November 2019. The DWT-PSO-RBFNN approach was compared with three other DWT coupling methods namely RBFNN, Backpropagation Neural Network (BPNN), and Self Adaptive Differential Evolution ? Extreme Learning Machine (SaDE-ELM). The statistical analysis revealed that the proposed method performed better based on MAPE, MAD, and RMSE emphasizing its great potential.
机构:
Anna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
机构:
Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Basser, Hossein
;
论文数: 引用数:
h-index:
机构:
Karami, Hojat
;
Shamshirband, Shahaboddin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Shamshirband, Shahaboddin
;
论文数: 引用数:
h-index:
机构:
Akib, Shatirah
;
Amirmojahedi, Mohsen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Amirmojahedi, Mohsen
;
Ahmad, Rodina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Dept Software Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Ahmad, Rodina
;
论文数: 引用数:
h-index:
机构:
Jahangirzadeh, Afshin
;
Javidnia, Hossein
论文数: 0引用数: 0
h-index: 0
机构:
NUI, Dept Engn & Informat, Elect & Elect Engn, Galway, IrelandUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
机构:
Anna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, IndiaAnna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
机构:
Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Basser, Hossein
;
论文数: 引用数:
h-index:
机构:
Karami, Hojat
;
Shamshirband, Shahaboddin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Shamshirband, Shahaboddin
;
论文数: 引用数:
h-index:
机构:
Akib, Shatirah
;
Amirmojahedi, Mohsen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Civil Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Amirmojahedi, Mohsen
;
Ahmad, Rodina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Dept Software Engn, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
Ahmad, Rodina
;
论文数: 引用数:
h-index:
机构:
Jahangirzadeh, Afshin
;
Javidnia, Hossein
论文数: 0引用数: 0
h-index: 0
机构:
NUI, Dept Engn & Informat, Elect & Elect Engn, Galway, IrelandUniv Malaya, Dept Civil Engn, Kuala Lumpur 50603, Malaysia