Nash equilibria of generalized games in normed spaces without upper semicontinuity

被引:15
作者
Cubiotti, Paolo [2 ]
Yao, Jen-Chih [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[2] Univ Messina, Dept Math, I-98166 Messina, Italy
关键词
Noncooperative generalized game; Nash equilibria; Multifunctions; Upper semicontinuity; QUASI-VARIATIONAL INEQUALITIES; EXISTENCE; THEOREM;
D O I
10.1007/s10898-009-9435-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to prove an existence theorem for the Nash equilibria of a noncooperative generalized game with infinite-dimensional strategy spaces. The main peculiarity of this result is the absence of upper semicontinuity assumptions on the constraint multifunctions. Our result is in the same spirit of the paper Cubiotti (J Game Theory 26: 267-273, 1997), where only the case of finite-dimensional strategy spaces was considered.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 19 条
[1]  
Aubin J.-P., 1993, OPTIMA EQUILIBRIA
[2]  
Aubin J-P., 1979, MATH METHODS GAME EC
[3]  
Cubiotti P, 1997, INT J GAME THEORY, V26, P267
[4]   On the discontinuous infinite-dimensional generalized quasivariational inequality problem [J].
Cubiotti, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (01) :97-111
[5]   A result related to Ricceri's conjecture on generalized quasi-variational inequalities [J].
Cubiotti, P ;
Yen, ND .
ARCHIV DER MATHEMATIK, 1997, 69 (06) :507-514
[6]  
DEBREU G, 1952, P NATIONAL ACADEMY S, V38, P386
[7]  
Dunford N., 1988, LINEAR OPERATORS
[9]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[10]   GENERALIZED NASH GAMES AND QUASI-VARIATIONAL INEQUALITIES [J].
HARKER, PT .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1991, 54 (01) :81-94