Small Latin squares, quasigroups, and loops

被引:92
|
作者
McKay, Brendan D. [1 ]
Meynert, Alison
Myrvold, Wendy
机构
[1] Australian Natl Univ, Dept Comp Sci, Canberra, ACT 0200, Australia
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
关键词
Latin square; quasigroup; loop; isotopy; main class; orthogonal;
D O I
10.1002/jcd.20105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the numbers of isotopy classes and main classes of Latin squares, and the numbers of isomorphism classes of quasigroups and loops, up to order 10. The best previous results were for Latin squares of order 8 (Kolesova, Lam, and Thiel, 1990), quasigroups of order 6 (Bower, 2000), and loops of order 7 (Brant and Mullen, 1985). The loops of order 8 have been independently found by "QSCGZ" and Guerin (unpublished, 2001). We also report on the most extensive search so far for a triple of mutually orthogonal Latin squares (MOLS) of order 10. Our computations show that any such triple must have only squares with trivial symmetry groups. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:98 / 119
页数:22
相关论文
共 50 条
  • [41] On the number of transversals in latin squares
    Potapov, Vladimir N.
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 194 - 196
  • [42] Packing of permutations into Latin squares
    Foldes, Stephan
    Kaszanyitzky, Andras
    Major, Laszlo
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 102 - 108
  • [43] Indivisible plexes in latin squares
    Darryn Bryant
    Judith Egan
    Barbara Maenhaut
    Ian M. Wanless
    Designs, Codes and Cryptography, 2009, 52 : 93 - 105
  • [44] Latin squares with restricted transversals
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (02) : 124 - 141
  • [45] On Parity Vectors of Latin Squares
    D. M. Donovan
    M. J. Grannell
    T. S. Griggs
    J. G. Lefevre
    Graphs and Combinatorics, 2010, 26 : 673 - 684
  • [46] Interaction detection in Latin and Hyper-latin squares
    Evangelaras, H.
    Koukouvinos, C.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (02) : 341 - 348
  • [47] Reconstructing Sets of Latin Squares, Linear and Equivalent to Linear Codes
    Gorkunov, Evgeny, V
    Danilko, Vitaly R.
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 47 - 51
  • [48] Further Results on Large Sets of Resolvable Idempotent Latin Squares
    Zhou, Junling
    Chang, Yanxun
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (09) : 399 - 407
  • [49] On the spectrum of mutually r-orthogonal idempotent Latin squares
    Yun-qing Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 813 - 822
  • [50] Symmetries that Latin squares inherit from 1-factorizations
    Wanless, IM
    Ihrig, EC
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (03) : 157 - 172