Small Latin squares, quasigroups, and loops

被引:92
|
作者
McKay, Brendan D. [1 ]
Meynert, Alison
Myrvold, Wendy
机构
[1] Australian Natl Univ, Dept Comp Sci, Canberra, ACT 0200, Australia
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
关键词
Latin square; quasigroup; loop; isotopy; main class; orthogonal;
D O I
10.1002/jcd.20105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the numbers of isotopy classes and main classes of Latin squares, and the numbers of isomorphism classes of quasigroups and loops, up to order 10. The best previous results were for Latin squares of order 8 (Kolesova, Lam, and Thiel, 1990), quasigroups of order 6 (Bower, 2000), and loops of order 7 (Brant and Mullen, 1985). The loops of order 8 have been independently found by "QSCGZ" and Guerin (unpublished, 2001). We also report on the most extensive search so far for a triple of mutually orthogonal Latin squares (MOLS) of order 10. Our computations show that any such triple must have only squares with trivial symmetry groups. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:98 / 119
页数:22
相关论文
共 50 条
  • [31] Latin Squares with a Unique Intercalate
    Mendis, Mahamendige Jayama Lalani
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (06) : 279 - 293
  • [32] Indivisible partitions of latin squares
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 402 - 417
  • [33] Partial Latin Squares Are Avoidable
    Lars-Daniel Öhman
    Annals of Combinatorics, 2011, 15 : 485 - 497
  • [34] Partial Latin Squares Are Avoidable
    Ohman, Lars-Daniel
    ANNALS OF COMBINATORICS, 2011, 15 (03) : 485 - 497
  • [35] A generalization of plexes of Latin squares
    Pula, Kyle
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 577 - 581
  • [36] Multi-latin squares
    Cavenagh, Nicholas
    Haemaelaeinen, Carlo
    Lefevre, James G.
    Stones, Douglas S.
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1164 - 1171
  • [37] ON THE CHROMATIC INDEX OF LATIN SQUARES
    Cavenagh, Nicholas J.
    Kuhl, Jaromy
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 22 - 30
  • [38] On Parity Vectors of Latin Squares
    Donovan, D. M.
    Grannell, M. J.
    Griggs, T. S.
    Lefevre, J. G.
    GRAPHS AND COMBINATORICS, 2010, 26 (05) : 673 - 684
  • [39] Indivisible plexes in latin squares
    Bryant, Darryn
    Egan, Judith
    Maenhaut, Barbara
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (01) : 93 - 105
  • [40] Latin Squares with Restricted Transversals
    Egan, Judith
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (07) : 344 - 361