Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions Defined by a Linear Combination

被引:48
作者
Srivastava, Hari M. [1 ,2 ]
Wanas, Abbas Kareem [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Al Qadisiyah, Coll Sci, Dept Math, Al Diwaniyah, Iraq
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 03期
关键词
analytic functions; univalent functions; m-Fold symmetric bi-univalent functions; coefficient bounds;
D O I
10.5666/KMJ.2019.59.3.493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present investigation, we define two new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination in the open unit disk U. Furthermore, for functions in each of the subclasses introduced here, we establish upper bounds for the initial coefficients vertical bar a(m+1)vertical bar and vertical bar a(2m+1)vertical bar. Also, we indicate certain special cases for our results.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 18 条
[1]  
Altinkaya S., 2015, J. Math., V2015, P1
[2]   ON SOME SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (01) :29-36
[3]   Second Hankel determinant for certain subclasses of bi-univalent functions [J].
Caglar, Murat ;
Deniz, Erhan ;
Srivastava, Hari Mohan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) :694-706
[4]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[5]   New subclasses of bi-univalent functions [J].
Frasin, B. A. ;
Aouf, M. K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (09) :1569-1573
[6]  
Goyal S. P., 2012, Journal of the Egyptian Mathematical Society, V20, P179, DOI [DOI 10.1016/j.joems.2012.08.020, 10.1016/j.joems.2012.08.020, DOI 10.1016/J.JOEMS.2012.08.020]
[7]  
KOEPF W, 1989, P AM MATH SOC, V105, P324
[8]   Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator [J].
Srivastava, H. M. ;
Sumer Eker, Sevtap ;
Hamidi, S. G. ;
Jahangiri, J. M. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01) :149-157
[9]   Coefficient estimates for some general subclasses of analytic and bi-univalent functions [J].
Srivastava H.M. ;
Gaboury S. ;
Ghanim F. .
Afrika Matematika, 2017, 28 (5-6) :693-706
[10]   INITIAL COEFFICIENT ESTIMATES FOR SOME SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS [J].
Srivastava, H. M. ;
Gaboury, S. ;
Ghanim, F. .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) :863-871