Computations of stresses and energy dissipation in composite thin laminates with the asymptotic vibration theory

被引:2
作者
Dimitrienko, Yu, I [1 ]
Dimitrienko, I. D. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Computat Math & Math Phys Dept, 2nd Baumanskaya St 5, Moscow 105005, Russia
关键词
Viscoelastic laminates; Vibrations; Mathematical modeling; Asymptotic homogenization; Computational modeling; FINITE-ELEMENT; HOMOGENIZATION ANALYSIS; SIMULATION; STRENGTH; PLATES; FORMULATION; MATRIX;
D O I
10.1016/j.camwa.2019.03.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper develops a computation method for energy dissipation parameters in thin viscoelastic composite plates under steady vibrations. The method is based on applying the asymptotic theory of laminated thin plates, which allows us to calculate accurately enough all six components of the stress tensor under cyclic loading and also complete expressions for the energy dissipation function and the accumulated energy with account of transverse and interlayer shear stresses. With the help of the developed method, we simulate stresses and energy dissipation parameters in a viscoelastic plate of fiber laminated carbon-plastic composite under flexural vibrations. Computations showed that transverse stresses and especially interlayer shear stresses contribute considerably to the integral energy dissipation coefficient of composite plates. This contribution is the most significant for rigid structures with a relatively small energy dissipation coefficient. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2541 / 2559
页数:19
相关论文
共 53 条
[1]   Functionally graded carbon nanofiber/phenolic nanocomposites and their mechanical properties [J].
Bafekrpour, Ehsan ;
Yang, Chunhui ;
Natali, Maurizio ;
Fox, Bronwyn .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 54 :124-134
[2]   Finite element and asymptotic homogenization methods applied to smart composite materials [J].
Berger, H ;
Gabbert, U ;
Köppe, H ;
Rodriguez-Ramos, R ;
Bravo-Castillero, J ;
Guinovart-Diaz, R ;
Otero, JA ;
Maugin, GA .
COMPUTATIONAL MECHANICS, 2003, 33 (01) :61-67
[3]   Modelling complex geometry using solid finite element meshes with correct composite material orientations [J].
Chen, Jiye ;
Hallett, Stephen R. ;
Wisnom, Michael R. .
COMPUTERS & STRUCTURES, 2010, 88 (9-10) :602-609
[4]  
Dimitrienko Y, 1997, APPL COMPOS MATER, V4, P239
[5]  
Dimitrienko Y., 2015, APPL MATH SCI, V9, P7211, DOI DOI 10.12988/AMS.2015.510641
[6]   LONG-TERM STRENGTH OF REINFORCED COMPOSITES [J].
DIMITRIENKO, YI ;
DIMITRIENKO, IP .
MECHANICS OF COMPOSITE MATERIALS, 1989, 25 (01) :13-18
[7]  
DIMITRIENKO YI, 1988, MECH COMPOS MATER, V24, P595
[8]  
DIMITRIENKO YI, 1991, MECH COMPOS MATER, V27, P670
[9]  
Dimitrienko YI., 2011, Nonlinear Continuum Mechanics and Large Inelastic Deformations. Solid Mechanics and its Applications
[10]   THE ASYMPTOTIC THEORY OF THERMOELASTICITY OF MULTILAYER COMPOSITE PLATES [J].
Dimitrienko, Yu. I. ;
Yakovlev, D. O. .
COMPOSITES-MECHANICS COMPUTATIONS APPLICATIONS, 2015, 6 (01) :13-51