Tensile creep properties of a CrMnFeCoNi high-entropy alloy

被引:38
作者
Zhang, M. [1 ]
George, E. P. [2 ,3 ]
Gibeling, J. C. [1 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2009, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
Creep; High-temperature deformation; Thermally activated processes; Dislocation structure; Multi-principal element alloys; VISCOUS GLIDE; STEADY-STATE; STRESS; BEHAVIOR; PRECIPITATION; STABILITY; EVOLUTION; SIZE; FLOW;
D O I
10.1016/j.scriptamat.2020.113633
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tensile creep tests were performed on a CrMnFeCoNi high-entropy alloy at temperatures from 1023 K to 1173 K. A uniform stress exponent 3.7 +/- 0.1 was found across all temperatures. The apparent activation energies of creep under various applied stresses were determined to be around 230 kJ/mol and decrease with increasing stress, indicating a stress-assisted, thermally activated behavior. Steady-state creep microstructures feature no subgrain formation and high dislocation density within grains. Based on our results, the creep rate of CrMnFeCoNi is believed to be controlled by both dislocation-dislocation interactions and dislocation-lattice interactions. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 2015, E138297 ASTM ASTM IN
[2]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[3]   Strengthening mechanisms in high entropy alloys: Fundamental issues [J].
Basu, Indranil ;
De Hosson, Jeff Th M. .
SCRIPTA MATERIALIA, 2020, 187 :148-156
[4]   Influence of annealing on the creep behavior of GlidCop Al-15 [J].
Broyles, S. E. ;
Zhang, M. ;
Gibeling, J. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 779
[5]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[6]   Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy [J].
Cao, Chengming ;
Fu, Jianxin ;
Tong, Tongwei ;
Hao, Yuxiao ;
Gu, Ping ;
Hao, Hai ;
Peng, Liangming .
ENTROPY, 2018, 20 (12)
[7]   Creep properties of an extruded copper-8% chromium-4% niobium alloy [J].
Decker, MW ;
Groza, JR ;
Gibeling, JC .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 369 (1-2) :101-111
[8]   Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J].
Ding, Jun ;
Yu, Qin ;
Asta, Mark ;
Ritchie, Robert O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) :8919-8924
[9]   Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy [J].
Dobes, Ferdinand ;
Hadraba, Hynek ;
Chlup, Zdenek ;
Dlouhy, Antonin ;
Vilemova, Monika ;
Matejicek, Jiri .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 732 :99-104
[10]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474