Permanent regimes for the Vlasov-Maxwell equations with specular boundary conditions

被引:0
|
作者
Bostan, Mihai [1 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
关键词
GLOBAL WEAK SOLUTIONS; 2 SPACE DIMENSIONS; POISSON SYSTEM; CLASSICAL-SOLUTIONS; INITIAL DATA; EXISTENCE;
D O I
10.1088/1751-8113/42/35/355502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The subject matter of this paper concerns the existence of permanent regimes (i.e. stationary or time periodic solutions) for the Vlasov-Maxwell system in a bounded domain. We are looking for equilibrium configurations by imposing specular boundary conditions. The main difficulty is the treatment of such boundary conditions. Our analysis relies on perturbative techniques, based on uniform a priori estimates.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [2] Hamiltonian splitting for the Vlasov-Maxwell equations
    Crouseilles, Nicolas
    Einkemmer, Lukas
    Faou, Erwan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 : 224 - 240
  • [3] Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Hong, Xue
    Manfredi, Giovanni
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (02)
  • [4] New variational principle for the Vlasov-Maxwell equations
    Brizard, AJ
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5768 - 5771
  • [5] LINEARIZED SYSTEM OF VLASOV-MAXWELL EQUATIONS.
    Aslamazyan, E.I.
    Moscow University computational mathematics and cybernetics, 1984, (02) : 78 - 81
  • [6] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [7] VLASOV-MAXWELL EQUATIONS FOR COMPLICATED PLASMA GEOMETRY
    ELFIMOV, AG
    CHEBTERRAB, ES
    COMPUTER PHYSICS COMMUNICATIONS, 1993, 77 (03) : 357 - 373
  • [8] EXISTENCE AND UNIQUENESS THEOREM FOR THE VLASOV-MAXWELL EQUATIONS
    ARTHUR, MD
    VOIGT, J
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1979, 8 (01): : 23 - 28
  • [9] Perturbative variational formulation of the Vlasov-Maxwell equations
    Brizard, Alain J.
    PHYSICS OF PLASMAS, 2018, 25 (11)
  • [10] Hamiltonian time integrators for Vlasov-Maxwell equations
    He, Yang
    Qin, Hong
    Sun, Yajuan
    Xiao, Jianyuan
    Zhang, Ruili
    Liu, Jian
    PHYSICS OF PLASMAS, 2015, 22 (12)