Almost Periodicity of Parabolic Evolution Equations with Inhomogeneous Boundary Values

被引:6
作者
Baroun, Mahmoud [1 ]
Maniar, Lahcen [2 ]
Schnaubelt, Roland [3 ]
机构
[1] Univ Gesamthsch Paderborn, Inst Math, D-33098 Paderborn, Germany
[2] Cadi Ayyad Univ, Fac Sci Semlalia, Marrakech 2390, Morocco
[3] Univ Karlsruhe, Fak Math, Inst Anal, D-76128 Karlsruhe, Germany
关键词
Asymptotic almost periodicity; Fredholm operators; inhomogeneous evolution equation; evolution family; parabolic initial-boundary value problem; inter- and extrapolation; exponential dichotomy; FREDHOLM PROPERTIES; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEMS; OPERATORS; SPACES;
D O I
10.1007/s00020-009-1704-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence and uniqueness of the (asymptotically) almost periodic solution to parabolic evolution equations with inhomogeneous boundary values on R and R(+/-), if the data are (asymptotically) almost periodic. We assume that the underlying homogeneous problem satisfies the 'Acquistapace-Terreni' conditions and has an exponential dichotomy. If there is an exponential dichotomy only on half intervals (-infinity,-T] and [T,infinity), then we obtain a Fredholm alternative of the equation on R in the space of functions being asymptotically almost periodic on R(+) and R(-).
引用
收藏
页码:169 / 193
页数:25
相关论文
共 29 条
[1]  
Acquistapace P., 1987, Rend. Semin. Mat. Univ. Padova, V78, P47, DOI [10.1016/0022-1236(85)90050-3, DOI 10.1016/0022-1236(85)90050-3]
[2]  
Acquistapace P., 1998, DIFFERENTIAL INTEGRA, V1, P433
[3]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[4]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[5]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[6]  
Arendt W., 2001, Vector-Valued Laplace Transforms and Cauchy Problems
[7]  
Atsushi Y., 1990, Funkcial. Ekvac, V33, P139
[8]   Almost periodicity of mild solutions of inhomogeneous periodic cauchy problems [J].
Batty, CJK ;
Hutter, W ;
Räbiger, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :309-327
[9]  
BATTY CJK, 2002, DIFFERENTIAL INTEGRA, V15, P477
[10]   Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems [J].
Boulite, S. ;
Maniar, L. ;
Moussi, M. .
FORUM MATHEMATICUM, 2006, 18 (04) :611-638