The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure

被引:91
作者
Hua, Yong [1 ]
Xu, Shusheng [1 ]
Wang, Yun [3 ]
Taleb, Wassim [1 ]
Sun, Jianbo [2 ]
Zhang, Lei [3 ]
Barker, Richard [1 ]
Neville, Anne [1 ]
机构
[1] Univ Leeds, Sch Mech Engn, Inst Funct Surfaces, Leeds LS2 9JT, W Yorkshire, England
[2] China Univ Petr, Sch Mech & Elect Engn, Qingdao, Shandong, Peoples R China
[3] Univ Sci & Technol Beijing, Corros & Protect Ctr, 30 Xueyuan Rd, Beijing, Peoples R China
基金
欧盟地平线“2020”;
关键词
Fe3O4; FeCO3; CO2; corrosion; Carbon steel; X-RAY-DIFFRACTION; MILD-STEEL; MECHANISM; SCALES; WATER; ELECTROCHEMISTRY;
D O I
10.1016/j.corsci.2019.06.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the corrosion performance of X65 carbon steel at elevated temperatures (up to 250 degrees C) and CO2 partial pressures (up to 28.5 bar pCO(2)). A detailed appraisal of how the corrosion products can protect against general and localised corrosion is presented. The morphology and chemical composition of corrosion products were determined using various microscopic and spectroscopic techniques, with localised corrosion rates being determined by surface profilometry. An increase in temperature or reduction in CO2 partial pressure favours the formation of a protective magnetite layer. It is thermodynamically more stable and more protective than iron carbonate in these conditions.
引用
收藏
页码:392 / 405
页数:14
相关论文
共 30 条
[1]   Discussion on "Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction" by A. Kahyarian, B. Brown, S. Nesic, [Corros. Seri. 129 (2017) 146-151] [J].
Almeida, T. C. ;
Bandeira, M. C. E. ;
Moreira, R. M. ;
Mattos, O. R. .
CORROSION SCIENCE, 2018, 133 :417-422
[2]   New insights on the role of CO2 in the mechanism of carbon steel corrosion [J].
Almeida, Tatiana das Chagas ;
Elaine Bandeira, Merlin Cristina ;
Moreira, Rogaciano Maia ;
Mattos, Oscar Rosa .
CORROSION SCIENCE, 2017, 120 :239-250
[3]  
[Anonymous], 2003, STAND PRACT PREP CLE
[4]  
ASTM, 2003, Standard G46-94Standard Guide for Examination and Evaluation of Pitting Corrosion
[5]   Effect of FeCO3 Supersaturation and Carbide Exposure on the CO2 Corrosion Rate of Carbon Steel [J].
Berntsen, T. ;
Seiersten, M. ;
Hemmingsen, T. .
CORROSION, 2013, 69 (06) :601-613
[6]   An in situ synchrotron radiation grazing incidence X-ray diffraction study of carbon dioxide corrosion [J].
De Marco, R ;
Jiang, ZT ;
Pejcic, B ;
Poinen, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) :B389-B392
[7]  
Dugstad A., 1992, Paper No. 92
[8]   Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS [J].
Farelas, F. ;
Galicia, M. ;
Brown, B. ;
Nesic, S. ;
Castaneda, H. .
CORROSION SCIENCE, 2010, 52 (02) :509-517
[9]   Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates [J].
Gao, Kewei ;
Yu, Fang ;
Pang, Xiaolu ;
Zhang, Guoan ;
Qiao, Lijie ;
Chu, Wuyang ;
Lu, Minxu .
CORROSION SCIENCE, 2008, 50 (10) :2796-2803
[10]  
Gopal M., CORROSION 98