Computation of Molecular Ionization Energies Using an Ensemble Density Functional Theory Method

被引:10
|
作者
Filatov, Michael [2 ]
Lee, Seunghoon [1 ]
Choi, Cheol Ho [2 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Kyungpook Natl Univ, Dept Chem, Daegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
REFERENCED KOHN-SHAM; RESOLVED PHOTOELECTRON-SPECTROSCOPY; FRACTIONALLY OCCUPIED STATES; ELECTRON PROPAGATOR THEORY; LONG-RANGE BEHAVIOR; EXCITATION-ENERGIES; EXCITED-STATES; HARTREE-FOCK; MOUNTAINEERING STRATEGY; KOOPMANS THEOREM;
D O I
10.1021/acs.jctc.0c00218
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computation of the ionization energies and of the respective Dyson orbitals based on the use of the extended Koopmans theorem (EKT) is implemented in connection with an ensemble density functional theory (eDFT) method, the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method. The new methodology enables fast computation of the ionization energies and evaluation of the respective Dyson orbitals, the square norms of which are related with the ionization probabilities, in the ground and excited electronic states of molecules. As the application of EKT recycles the intermediate quantities from the SSR analytical energy gradient, evaluation of the ionization energies and probabilities can be carried out on-the-fly during the nonadiabatic molecular dynamics simulations. This opens up a perspective for fast theoretical simulation of the time-resolved photoelectron spectroscopy observations. In the present work, the new methodology is tested in the computation of the ionization energies and Dyson orbitals of several molecules in the ground and excited electronic states, including strongly correlated species, such as the ozone molecule, dissociating chemical bonds, and conical intersections.
引用
收藏
页码:4489 / 4504
页数:16
相关论文
共 50 条
  • [31] An efficient method for calculating molecular excitation energies by time-dependent density-functional theory
    Heinze, HH
    Görling, A
    Rösch, N
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (06): : 2088 - 2099
  • [32] vanderWaals energies in density functional theory
    Kohn, W
    Meir, Y
    Makarov, DE
    PHYSICAL REVIEW LETTERS, 1998, 80 (19) : 4153 - 4156
  • [33] Density functional theory and quantum computation
    Gaitan, Frank
    Nori, Franco
    PHYSICAL REVIEW B, 2009, 79 (20)
  • [34] DENSITY FUNCTIONAL THEORY AND QUANTUM COMPUTATION
    Gaitan, Frank
    Nori, Franco
    QUANTUM INFORMATION AND COMPUTATION FOR CHEMISTRY, 2014, 154 : 137 - 149
  • [35] Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional
    Borgis, Daniel
    Luukkonen, Sohvi
    Belloni, Luc
    Jeanmairet, Guillaume
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (02):
  • [36] Computation of interaction energies via density functional theory with empirical van der Waals corrections
    Deligkaris, Christos
    Rodriguez, Jorge H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [37] Molecular excitation energies from time-dependent density functional theory
    Grabo, T
    Petersilka, M
    Gross, EKU
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 501 : 353 - 367
  • [38] Machine Learning for the Prediction of Ionization Potential and Electron Affinity Energies Obtained by Density Functional Theory
    Pereira, Florbela
    CHEMISTRYSELECT, 2023, 8 (16):
  • [39] Formation energies of rutile metal dioxides using density functional theory
    Martinez, J. I.
    Hansen, H. A.
    Rossmeisl, J.
    Norskov, J. K.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [40] A simple method to approximate electrode potential-dependent activation energies using density functional theory
    Akhade, Sneha A.
    Bernstein, Nicole J.
    Esopi, Monica R.
    Regula, Michael J.
    Janik, Michael J.
    CATALYSIS TODAY, 2017, 288 : 63 - 73