Parameter estimation of Pendubot model using modified differential evolution algorithm

被引:4
作者
Ngoc Son Nguyen [1 ]
Duy Khanh Nguyen [1 ]
机构
[1] Ind Univ Ho Chi Minh City, Fac Elect Technol, Ho Chi Minh City, Vietnam
关键词
Differential evolution; improved differential evolution; pendubot system; parameter estimation; ARTIFICIAL BEE COLONY; SOLAR-CELLS; IDENTIFICATION; OPTIMIZATION;
D O I
10.1080/02286203.2018.1525938
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation plays a critical role in accurately describing system behavior through mathematical models such as a parametric dynamic model. In this paper, a modified differential evolution (MDE) algorithm is proposed to identify the parametric dynamic model of a Pendubot system with friction. In the MDE algorithm, the improvement is to focus on the mutation phase with a new mutation scheme in which multi-mutation operators are used, including rand/1 and best/1 for selecting target vectors in population. The performance of the MDE algorithm is tested on a set of fourth benchmark functions, and it is compared with the other algorithms such as a traditional differential evolution (DE), a hybrid DE (HDE) algorithm and a particle swarm optimization (PSO). The MDE algorithm is then used to identify the Pendubot' parameters accurately. Experimental results demonstrate the high performance of the proposed method regarding robustness and accuracy.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 35 条
[1]  
Alireza Alfi, 2011, Acta Automatica Sinica, V37, P541, DOI 10.3724/SP.J.1004.2011.00541
[2]   Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation [J].
Chen, Xu ;
Xu, Bin ;
Mei, Congli ;
Ding, Yuhan ;
Li, Kangji .
APPLIED ENERGY, 2018, 212 :1578-1588
[3]   An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution [J].
Chin, Vun Jack ;
Salam, Zainal ;
Ishaque, Kashif .
ENERGY CONVERSION AND MANAGEMENT, 2016, 124 :42-50
[4]   Application of genetic algorithm for unknown parameter estimations in cylindrical fin [J].
Das, Ranjan .
APPLIED SOFT COMPUTING, 2012, 12 (11) :3369-3378
[5]   Parameter estimation of activated sludge process based on an improved cuckoo search algorithm [J].
Du, Xianjun ;
Wang, Junlu ;
Jegatheesan, Veeriah ;
Shi, Guohua .
BIORESOURCE TECHNOLOGY, 2018, 249 :447-456
[6]   Differential evolution for system identification of self-excited vibrations [J].
Erdbrink, Christiaan D. ;
Krzhizhanovskaya, Valeria V. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2015, 10 :360-369
[7]   Identification time-delayed fractional order chaos with functional extrema model via differential evolution [J].
Gao, Fei ;
Lee, Xue-jing ;
Fei, Feng-xia ;
Tong, Heng-qing ;
Deng, Yan-fang ;
Zhao, Hua-ling .
EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (04) :1601-1608
[8]   A differential evolution proposal for estimating the maximum power delivered by CPV modules under real outdoor conditions [J].
Garcia-Domingo, B. ;
Carmona, C. J. ;
Rivera-Rivas, A. J. ;
del Jesus, M. J. ;
Aguilera, J. .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) :5452-5462
[9]   An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module [J].
Hultmann Ayala, Helon Vicente ;
Coelho, Leandro dos Santos ;
Mariani, Viviana Cocco ;
Askarzadeh, Alireza .
ENERGY, 2015, 93 :1515-1522
[10]   Parameter identification of chaotic systems using artificial raindrop algorithm [J].
Jiang, Qiaoyong ;
Wang, Lei ;
Hei, Xinhong .
JOURNAL OF COMPUTATIONAL SCIENCE, 2015, 8 :20-31