State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach

被引:146
|
作者
Babaeiyazdi, Iman [1 ]
Rezaei-Zare, Afshin [1 ]
Shokrzadeh, Shahab [1 ]
机构
[1] York Univ, Dept Elect Engn & Comp Sci, Toronto, ON M3J 1P3, Canada
关键词
Electric vehicle; Electrochemical impedance spectroscopy; Li-ion batteries; Machine learning; SOC ESTIMATION; OF-CHARGE; ALGORITHM; CAPACITY; MODEL;
D O I
10.1016/j.energy.2021.120116
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to the significantly complex and nonlinear behavior of li-ion batteries, forecasting the state of charge (SOC) of the batteries is still a great challenge. Therefore, accurate SOC estimation is essential for the proper operation of batteries while the battery is monitored by the battery management system (BMS). To this end, this paper employs informative measurements of electrochemical impedance spectroscopy (EIS) in machine learning models (ML), i.e., linear regression model and Gaussian process regression (GPR), to accurately predict the SOC of li-ion batteries. First, a feature sensitivity analysis of the data is conducted to extract the most reliable features, i.e., the EIS impedances which are highly correlated with SOC, from EIS measurements. Then, the models are fed by the chosen features. The models are designed to train the input features and establish the mapping relationship between the selected features and the SOC. The results demonstrate that the error of the GPR model was found to be less than 3.8%. Considering onboard EIS measurements, this method can be practically embedded in the battery management system for accurate measurements of SOC of li-ion batteries and ensure the proper and efficient operation of battery-powered electric vehicles. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Machine Learning Approach for State-of-Charge Estimation of Li-ion batteries
    Youssef, Heba Yahia
    Alkhaja, Latifa A.
    Almazrouei, Hajar Humaid
    Nassif, Ali Bou
    Ghenai, Chaouki
    AlShabi, Mohammad
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS IV, 2022, 12113
  • [2] Machine learning configurations for state of charge predictions of Li-ion batteries
    Rae, Mitchell
    Ottaviani, Michela
    Capkova, Dominika
    Kazda, Tomas
    Singh, Mehakpreet
    MONATSHEFTE FUR CHEMIE, 2025, : 531 - 537
  • [3] State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Emadi, Ali
    JOURNAL OF POWER SOURCES, 2018, 400 : 242 - 255
  • [4] Estimation of state-of-charge of Li-ion batteries in EV using the genetic particle filter
    Bi, Jun
    Gao, Hang
    Wang, Yongxing
    Zhao, Xiaomei
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, ENERGY TECHNOLOGY AND ENVIRONMENTAL ENGINEERING (MSETEE 2017), 2017, 81
  • [6] The state of health prediction of Li-ion batteries based on an improved extreme learning machine
    Hou, Xiaokang
    Guo, Xiaodong
    Yuan, Yupeng
    Zhao, Ke
    Tong, Liang
    Yuan, Chengqing
    Teng, Long
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [7] Transfer Learning With Deep Neural Network for Capacity Prediction of Li-Ion Batteries Using EIS Measurement
    Babaeiyazdi, Iman
    Rezaei-Zare, Afshin
    Shokrzadeh, Shahab
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01): : 886 - 895
  • [8] Data-Driven State of Charge Estimation of Li-ion Batteries using Supervised Machine Learning Methods
    Li, Yichun
    Maleki, Mina
    Banitaan, Shadi
    Chen, Mingzuoyang
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 873 - 878
  • [9] Investigation of the performance of direct forecasting strategy using machine learning in State-of-Charge prediction of Li-ion batteries exposed to dynamic loads
    Dineva, Adrienn
    Csomos, Bence
    Sz, Szabolcs Kocsis
    Vajda, Istvan
    JOURNAL OF ENERGY STORAGE, 2021, 36
  • [10] Unified Approach for Estimation of State of Charge and Remaining Useful Life of Li-Ion batteries using Deep Learning
    Mullapudi, Bharat
    Shanmughasundaram, R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,