A SIMPLE PROOF OF THE SHORT-TIME EXISTENCE AND UNIQUENESS FOR RICCI FLOW

被引:0
作者
Eftekharinasab, Kaveh [1 ]
机构
[1] NAS Ukraine, Inst Math, Topol lab, 3 Tereshchenkivska St, UA-01601 Kiev, Ukraine
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2019年 / 72卷 / 05期
关键词
bounded Frechet manifold; Ricci flow; bounded geometry; METRICS;
D O I
10.7546/CRABS.2019.05.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this short note we give a simple proof for the local existence and uniqueness for the Ricci flow on a compact manifold. We suggest a new setting for studying the space of Riemannian metrics on a compact manifold.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 12 条
[1]  
CHEEGER J, 1985, J DIFFER GEOM, V21, P1
[2]  
DETURCK DM, 1983, J DIFFER GEOM, V18, P157
[3]  
Dodson C. T. J., 2015, LONDON MATH SOC LECT, V428
[4]  
EFTEKHARINASAB K, 2010, UKR MATH J, V62, P1634
[5]  
EFTEKHARINASAB K, 2015, ZB PR I MAT NAN UKR, V12, P89
[6]   GEOMETRY OF BOUNDED FRECHET MANIFOLDS [J].
Eftekharinasab, Kaveh .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (03) :895-913
[7]  
Engel A., 2014, THESIS
[8]  
Ghahremani-Gol H, 2013, BALK J GEOM APPL, V18, P20
[9]   COMPLETE METRICS OF BOUNDED CURVATURE ON NONCOMPACT MANIFOLDS [J].
GREENE, RE .
ARCHIV DER MATHEMATIK, 1978, 31 (01) :89-95
[10]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255