Recurrent Attentional Networks for Saliency Detection

被引:163
作者
Kuen, Jason [1 ]
Wang, Zhenhua [1 ]
Wang, Gang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
关键词
OBJECT DETECTION;
D O I
10.1109/CVPR.2016.399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional-deconvolution networks can be adopted to perform end-to-end saliency detection. But, they do not work well with objects of multiple scales. To overcome such a limitation, in this work, we propose a recurrent attentional convolutional-deconvolution network (RACDNN). Using spatial transformer and recurrent network units, RACDNN is able to iteratively attend to selected image sub-regions to perform saliency refinement progressively. Besides tackling the scale problem, RACDNN can also learn context-aware features from past iterations to enhance saliency refinement in future iterations. Experiments on several challenging saliency detection datasets validate the effectiveness of RACDNN, and show that RACDNN outperforms state-of-the-art saliency detection methods.
引用
收藏
页码:3668 / 3677
页数:10
相关论文
共 50 条
[11]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416
[12]  
Dosovitskiy A, 2015, PROC CVPR IEEE, P1538, DOI 10.1109/CVPR.2015.7298761
[13]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[14]  
García GM, 2015, IEEE INT CONF ROBOT, P1866, DOI 10.1109/ICRA.2015.7139441
[15]  
Gregor K., 2015, JMLR WORKSHOP C P
[16]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377
[17]   ImageNet Auto-Annotation with Segmentation Propagation [J].
Guillaumin, Matthieu ;
Kuettel, Daniel ;
Ferrari, Vittorio .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (03) :328-348
[18]  
Harel J., 2007, ADV NEURAL INFORM PR, P545, DOI DOI 10.7551/MITPRESS/7503.003.0073
[19]  
Hou X., 2007, IEEE C COMP VIS PATT, V2007, P1, DOI DOI 10.1109/CVPR.2007.383267
[20]  
Ioffe Sergey, 2015, PROC INT C MACH LEAR, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167