Recurrent Attentional Networks for Saliency Detection

被引:162
作者
Kuen, Jason [1 ]
Wang, Zhenhua [1 ]
Wang, Gang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
关键词
OBJECT DETECTION;
D O I
10.1109/CVPR.2016.399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional-deconvolution networks can be adopted to perform end-to-end saliency detection. But, they do not work well with objects of multiple scales. To overcome such a limitation, in this work, we propose a recurrent attentional convolutional-deconvolution network (RACDNN). Using spatial transformer and recurrent network units, RACDNN is able to iteratively attend to selected image sub-regions to perform saliency refinement progressively. Besides tackling the scale problem, RACDNN can also learn context-aware features from past iterations to enhance saliency refinement in future iterations. Experiments on several challenging saliency detection datasets validate the effectiveness of RACDNN, and show that RACDNN outperforms state-of-the-art saliency detection methods.
引用
收藏
页码:3668 / 3677
页数:10
相关论文
共 50 条
  • [11] Global Contrast based Salient Region Detection
    Cheng, Ming-Ming
    Zhang, Guo-Xin
    Mitra, Niloy J.
    Huang, Xiaolei
    Hu, Shi-Min
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 409 - 416
  • [12] Dosovitskiy A, 2015, PROC CVPR IEEE, P1538, DOI 10.1109/CVPR.2015.7298761
  • [13] FINDING STRUCTURE IN TIME
    ELMAN, JL
    [J]. COGNITIVE SCIENCE, 1990, 14 (02) : 179 - 211
  • [14] García GM, 2015, IEEE INT CONF ROBOT, P1866, DOI 10.1109/ICRA.2015.7139441
  • [15] Gregor K., 2015, JMLR WORKSHOP C P
  • [16] Recent advances in convolutional neural networks
    Gu, Jiuxiang
    Wang, Zhenhua
    Kuen, Jason
    Ma, Lianyang
    Shahroudy, Amir
    Shuai, Bing
    Liu, Ting
    Wang, Xingxing
    Wang, Gang
    Cai, Jianfei
    Chen, Tsuhan
    [J]. PATTERN RECOGNITION, 2018, 77 : 354 - 377
  • [17] ImageNet Auto-Annotation with Segmentation Propagation
    Guillaumin, Matthieu
    Kuettel, Daniel
    Ferrari, Vittorio
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (03) : 328 - 348
  • [18] Harel J., 2007, ADV NEURAL INFORM PR, P545, DOI DOI 10.7551/MITPRESS/7503.003.0073
  • [19] Hou X., 2007, IEEE C COMP VIS PATT, V2007, P1, DOI DOI 10.1109/CVPR.2007.383267
  • [20] Ioffe Sergey, 2015, PROC INT C MACH LEAR, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167