Recurrent Attentional Networks for Saliency Detection

被引:162
作者
Kuen, Jason [1 ]
Wang, Zhenhua [1 ]
Wang, Gang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
关键词
OBJECT DETECTION;
D O I
10.1109/CVPR.2016.399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional-deconvolution networks can be adopted to perform end-to-end saliency detection. But, they do not work well with objects of multiple scales. To overcome such a limitation, in this work, we propose a recurrent attentional convolutional-deconvolution network (RACDNN). Using spatial transformer and recurrent network units, RACDNN is able to iteratively attend to selected image sub-regions to perform saliency refinement progressively. Besides tackling the scale problem, RACDNN can also learn context-aware features from past iterations to enhance saliency refinement in future iterations. Experiments on several challenging saliency detection datasets validate the effectiveness of RACDNN, and show that RACDNN outperforms state-of-the-art saliency detection methods.
引用
收藏
页码:3668 / 3677
页数:10
相关论文
共 50 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
Alpert S, 2007, PROC CVPR IEEE, P359
[3]  
[Anonymous], HEREDITY
[4]  
[Anonymous], 2015, P INT C LEARN REPR
[5]  
[Anonymous], IEEE C COMP VIS PATT
[6]  
Borji A., 2012, P IEEE COMP SOC C CO, P23
[7]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[8]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[9]  
Chen TC, 2009, PROC EUR SOLID-STATE, P1
[10]   SalientShape: group saliency in image collections [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
VISUAL COMPUTER, 2014, 30 (04) :443-453