Recurrent Attentional Networks for Saliency Detection

被引:162
作者
Kuen, Jason [1 ]
Wang, Zhenhua [1 ]
Wang, Gang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
关键词
OBJECT DETECTION;
D O I
10.1109/CVPR.2016.399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional-deconvolution networks can be adopted to perform end-to-end saliency detection. But, they do not work well with objects of multiple scales. To overcome such a limitation, in this work, we propose a recurrent attentional convolutional-deconvolution network (RACDNN). Using spatial transformer and recurrent network units, RACDNN is able to iteratively attend to selected image sub-regions to perform saliency refinement progressively. Besides tackling the scale problem, RACDNN can also learn context-aware features from past iterations to enhance saliency refinement in future iterations. Experiments on several challenging saliency detection datasets validate the effectiveness of RACDNN, and show that RACDNN outperforms state-of-the-art saliency detection methods.
引用
收藏
页码:3668 / 3677
页数:10
相关论文
共 50 条
  • [1] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [2] Alpert S, 2007, PROC CVPR IEEE, P359
  • [3] [Anonymous], HEREDITY
  • [4] [Anonymous], 2015, P INT C LEARN REPR
  • [5] [Anonymous], IEEE C COMP VIS PATT
  • [6] Borji A., 2012, P IEEE COMP SOC C CO, P23
  • [7] Salient Object Detection: A Benchmark
    Borji, Ali
    Sihite, Dicky N.
    Itti, Laurent
    [J]. COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 414 - 429
  • [8] The devil is in the details: an evaluation of recent feature encoding methods
    Chatfield, Ken
    Lempitsky, Victor
    Vedaldi, Andrea
    Zisserman, Andrew
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [9] Chen TC, 2009, PROC EUR SOLID-STATE, P1
  • [10] SalientShape: group saliency in image collections
    Cheng, Ming-Ming
    Mitra, Niloy J.
    Huang, Xiaolei
    Hu, Shi-Min
    [J]. VISUAL COMPUTER, 2014, 30 (04) : 443 - 453