The collection of MicroED data for macromolecular crystallography

被引:85
作者
Shi, Dan [1 ]
Nannenga, Brent L. [1 ]
de la Cruz, M. Jason [1 ]
Liu, Jinyang [1 ]
Sawtelle, Steven [1 ]
Calero, Guillermo [2 ]
Reyes, Francis E. [1 ]
Hattne, Johan [1 ]
Gonen, Tamir [1 ]
机构
[1] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA USA
[2] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA USA
关键词
DIFFRACTION DATA; PROTEIN CRYSTALS; MICROSCOPY; SYSTEM; SUITE;
D O I
10.1038/nprot.2016.046
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is similar to 10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.
引用
收藏
页码:895 / 904
页数:10
相关论文
共 33 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] [Anonymous], CURR PROTOC PROTEIN
  • [3] iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
    Battye, T. Geoff G.
    Kontogiannis, Luke
    Johnson, Owen
    Powell, Harold R.
    Leslie, Andrew G. W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 : 271 - 281
  • [4] Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT
    Blanc, E
    Roversi, P
    Vonrhein, C
    Flensburg, C
    Lea, SM
    Bricogne, G
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 2210 - 2221
  • [5] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [6] Version 1.2 of the Crystallography and NMR system
    Brunger, Axel T.
    [J]. NATURE PROTOCOLS, 2007, 2 (11) : 2728 - 2733
  • [7] Femtosecond X-ray protein nanocrystallography
    Chapman, Henry N.
    Fromme, Petra
    Barty, Anton
    White, Thomas A.
    Kirian, Richard A.
    Aquila, Andrew
    Hunter, Mark S.
    Schulz, Joachim
    DePonte, Daniel P.
    Weierstall, Uwe
    Doak, R. Bruce
    Maia, Filipe R. N. C.
    Martin, Andrew V.
    Schlichting, Ilme
    Lomb, Lukas
    Coppola, Nicola
    Shoeman, Robert L.
    Epp, Sascha W.
    Hartmann, Robert
    Rolles, Daniel
    Rudenko, Artem
    Foucar, Lutz
    Kimmel, Nils
    Weidenspointner, Georg
    Holl, Peter
    Liang, Mengning
    Barthelmess, Miriam
    Caleman, Carl
    Boutet, Sebastien
    Bogan, Michael J.
    Krzywinski, Jacek
    Bostedt, Christoph
    Bajt, Sasa
    Gumprecht, Lars
    Rudek, Benedikt
    Erk, Benjamin
    Schmidt, Carlo
    Hoemke, Andre
    Reich, Christian
    Pietschner, Daniel
    Strueder, Lothar
    Hauser, Guenter
    Gorke, Hubert
    Ullrich, Joachim
    Herrmann, Sven
    Schaller, Gerhard
    Schopper, Florian
    Soltau, Heike
    Kuehnel, Kai-Uwe
    Messerschmidt, Marc
    [J]. NATURE, 2011, 470 (7332) : 73 - U81
  • [8] Fast electron diffraction tomography
    Gemmi, Mauro
    La Placa, Maria G. I.
    Galanis, Athanassios S.
    Rauch, Edgar F.
    Nicolopoulos, Stavros
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 : 718 - 727
  • [9] Gonen Tamir, 2013, Methods Mol Biol, V955, P153, DOI 10.1007/978-1-62703-176-9_9
  • [10] Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes
    Grassucci, Robert A.
    Taylor, Derek
    Frank, Joachim
    [J]. NATURE PROTOCOLS, 2008, 3 (02) : 330 - 339