Automated Performance Assessment in Transoesophageal Echocardiography with Convolutional Neural Networks

被引:5
作者
Mazomenos, Evangelos B. [1 ]
Bansal, Kamakshi [1 ]
Martin, Bruce [3 ]
Smith, Andrew [3 ]
Wright, Susan [2 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Dept Comp Sci, UCL Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[2] NHS Fdn Trust, St Georges Univ Hosp, London, England
[3] NHS Fdn Trust, St Bartholomews Hosp, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV | 2018年 / 11073卷
基金
英国工程与自然科学研究理事会;
关键词
Automated skill assessment; Transoesophageal echocardiography; Convolutional Neural Networks; SIMULATOR; RECOMMENDATIONS;
D O I
10.1007/978-3-030-00937-3_30
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Transoesophageal echocardiography (TEE) is a valuable diagnostic and monitoring imaging modality. Proper image acquisition is essential for diagnosis, yet current assessment techniques are solely based on manual expert review. This paper presents a supervised deep learning framework for automatically evaluating and grading the quality of TEE images. To obtain the necessary dataset, 38 participants of varied experience performed TEE exams with a high-fidelity virtual reality (VR) platform. Two Convolutional Neural Network (CNN) architectures, AlexNet and VGG, structured to perform regression, were finetuned and validated on manually graded images from three evaluators. Two different scoring strategies, a criteria-based percentage and an overall general impression, were used. The developed CNN models estimate the average score with a root mean square accuracy ranging between 84%-93%, indicating the ability to replicate expert valuation. Proposed strategies for automated TEE assessment can have a significant impact on the training process of new TEE operators, providing direct feedback and facilitating the development of the necessary dexterous skills.
引用
收藏
页码:256 / 264
页数:9
相关论文
共 14 条
[1]   Focused transesophageal echocardiography for emergency physicians—description and results from simulation training of a structured four-view examination [J].
Arntfield R. ;
Pace J. ;
McLeod S. ;
Granton J. ;
Hegazy A. ;
Lingard L. .
Critical Ultrasound Journal, 2015, 7 (1)
[2]   Utility of a Transesophageal Echocardiographic Simulator as a Teaching Tool [J].
Bose, Ruma R. ;
Matyal, Robina ;
Warraich, Haider J. ;
Summers, John ;
Subramaniam, Balachundher ;
Mitchell, John ;
Panzica, Peter J. ;
Shahul, Sajid ;
Mahmood, Feroze .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2011, 25 (02) :212-215
[3]   Effects of Transesophageal Echocardiography Simulator Training on Learning and Performance in Cardiovascular Medicine Fellows [J].
Damp, Julie ;
Anthony, Ryan ;
Davidson, Mario A. ;
Mendes, Lisa .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2013, 26 (12) :1450-+
[4]   Simulator Training Enhances Resident Performance in Transesophageal Echocardiography [J].
Ferrero, Natalie A. ;
Bortsov, Andrey V. ;
Arora, Harendra ;
Martinelli, Susan M. ;
Kolarczyk, Lavinia M. ;
Teeter, Emily C. ;
Zvara, David A. ;
Kumar, Priya A. .
ANESTHESIOLOGY, 2014, 120 (01) :149-159
[5]   Recommendations for transoesophageal echocardiography: update 2010 [J].
Flachskampf, F. A. ;
Badano, L. ;
Daniel, W. G. ;
Feneck, R. O. ;
Fox, K. F. ;
Fraser, Alan G. ;
Pasquet, Agnes ;
Pepi, M. ;
de Isla, L. Perez ;
Zamorano, J. L. .
EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY, 2010, 11 (07) :557-576
[6]   Guidelines for Performing a Comprehensive Transesophageal Echocardiographic Examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists [J].
Hahn, Rebecca T. ;
Abraham, Theodore ;
Adams, Mark S. ;
Bruce, Charles J. ;
Glas, Kathryn E. ;
Lang, Roberto M. ;
Reeves, Scott T. ;
Shanewise, Jack S. ;
Siu, Samuel C. ;
Stewart, William ;
Picard, Michael H. .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2013, 26 (09) :921-964
[7]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[8]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[9]   Manual Skill Acquisition During Transesophageal Echocardiography Simulator Training of Cardiology Fellows: A Kinematic Assessment [J].
Matyal, Robina ;
Montealegre-Gallegos, Mario ;
Mitchell, John D. ;
Kim, Han ;
Bergman, Remco ;
Hawthorne, Katie M. ;
O'Halloran, David ;
Wong, Vanessa ;
Hess, Phillip E. ;
Mahmood, Feroze .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2015, 29 (06) :1504-1510
[10]  
Mazomenos Evangelos B., 2016, Medical Imaging and Augmented Reality. 7th International Conference, MIAR 2016. Proceedings: LNCS 9805, P96, DOI 10.1007/978-3-319-43775-0_9