Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature

被引:38
作者
Chen, Pin-Yi [1 ,2 ]
Wang, Sheng-Fen [1 ]
Chien, R. R. [1 ,2 ]
Tu, Chi-Shun [1 ,3 ]
Feng, Kuei-Chih [1 ,2 ]
Chen, Cheng-Sao [4 ]
Hung, Kuo-Yung [1 ,2 ]
Schmidt, V. Hugo [5 ]
机构
[1] Ming Chi Univ Technol, Res Ctr Intelligent Med Devices, New Taipei 24301, Taiwan
[2] Ming Chi Univ Technol, Dept Mech Engn, New Taipei 24301, Taiwan
[3] Fu Jen Catholic Univ, Dept Phys, New Taipei 24205, Taiwan
[4] Hwa Hsia Univ Technol, Dept Mech Engn, New Taipei 23567, Taiwan
[5] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
关键词
Hydroxyapatite; Sintering temperature; Hardness; Grain size; Ion release; BONE TISSUE; IN-VITRO; CALCIUM; CERAMICS; BEHAVIOR; HARDNESS; SPECTROSCOPY; CRYSTALS; POWDERS;
D O I
10.1016/j.ceramint.2019.05.144
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study highlights the effects of sintering temperature on the microstructures, densification, grain sizes/ boundaries, calcium/phosphorus (Ca/P) ion ratios, mechanical and bioactive properties of biocompatible hydroxyapatite (HA) ceramics prepared via cold isostatic pressing. X-ray diffraction refinement analysis revealed that the phase ratios of hexagonal HA and secondary phases were sensitive to the sintering temperature. Grain sizes, densities, and shrinkages of the as-sintered HA ceramics increased with increasing sintering temperature. The Ca/P ratios of the as-sintered HA specimens ranged from 1.63 to 1.71 for sintering temperatures of 900-1300 degrees C. The maximum mechanical hardness was achieved in the specimen sintered at 1200 degrees C due to the dense matrix formed with a smaller grain size and fewer flawed grain boundaries, as determined by high-resolution transmission electron microscopy. Ion release analysis (in a simulated body fluid solution) indicated that phosphorus ions were absorbed and rapid deposition of calcium ions occurred after immersion periods of above 4 days.
引用
收藏
页码:16226 / 16233
页数:8
相关论文
共 43 条
[1]   Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density [J].
Batchelar, DL ;
Davidson, MTM ;
Dabrowski, W ;
Cunningham, IA .
MEDICAL PHYSICS, 2006, 33 (04) :904-915
[2]   PROCESSING BEHAVIOR OF HYDROXYAPATITE POWDERS WITH CONTRASTING MORPHOLOGY [J].
BEST, S ;
BONFIELD, W .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1994, 5 (08) :516-521
[3]  
Bohner M, 2000, Injury, V31 Suppl 4, P37
[4]   Calcium phosphates for biomedical applications [J].
Canillas, Maria ;
Pena, Pilar ;
de Aza, Antonio H. ;
Rodriguez, Miguel A. .
BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2017, 56 (03) :91-112
[5]   Application of vibrational spectroscopy to the study of mineralized tissues (review) [J].
Carden, A ;
Morris, MD .
JOURNAL OF BIOMEDICAL OPTICS, 2000, 5 (03) :259-268
[6]   Sintering of calcium phosphate bioceramics [J].
Champion, E. .
ACTA BIOMATERIALIA, 2013, 9 (04) :5855-5875
[7]   Characterization of a calcium phospho-silicated apatite with iron oxide inclusions [J].
Desport, Barthelemy ;
Carpena, Joelle ;
Lacout, Jean-Louis ;
Borschneck, Daniel ;
Gattacceca, Jerome .
JOURNAL OF CRYSTAL GROWTH, 2011, 316 (01) :164-171
[8]   Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications [J].
Dorozhkin, Sergey V. .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2015, 6 (03) :708-832
[9]   Calcium Orthophosphate-Based Bioceramics [J].
Dorozhkin, Sergey V. .
MATERIALS, 2013, 6 (09) :3840-3942
[10]  
Dorozhkin SV, 2002, ANGEW CHEM INT EDIT, V41, P3130, DOI 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO