Symmetries and reversing symmetries of area-preserving polynomial mappings in generalised standard form

被引:9
作者
Roberts, JAG [1 ]
Baake, M
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
[3] Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
关键词
polynomial automorphism; symmetry; reversing symmetry;
D O I
10.1016/S0378-4371(02)01321-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the symmetries and reversing symmetries within G, the group of real planar polynomial automorphisms, of area-preserving nonlinear polynomial maps L in generalised standard form L: x' = x + p(1)(y), y' = y + p(2)(x'), where p(1) and p(2) are polynomials. We do this by using the amalgamated free product structure of G. Our results lead to normal forms for polynomial maps in generalised standard form and to a classification of the group structures of the reversing symmetry groups for such maps. (C) 2002 Michael Baake. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 21 条
[11]   Time-reversal symmetry in dynamical systems: A survey [J].
Lamb, JSW ;
Roberts, JAG .
PHYSICA D, 1998, 112 (1-2) :1-39
[12]   REVERSING SYMMETRIES IN DYNAMIC-SYSTEMS [J].
LAMB, JSW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :925-937
[13]  
Mackay R. S., 1993, Renormalisation in area preserving maps, V6
[14]  
MacKay R.S., 1987, Hamiltonian Dynamical Systems
[15]   CHAOS AND TIME-REVERSAL SYMMETRY - ORDER AND CHAOS IN REVERSIBLE DYNAMIC-SYSTEMS [J].
ROBERTS, JAG ;
QUISPEL, GRW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 216 (2-3) :63-177
[16]   AREA PRESERVING MAPPINGS THAT ARE NOT REVERSIBLE [J].
ROBERTS, JAG ;
CAPEL, HW .
PHYSICS LETTERS A, 1992, 162 (03) :243-248
[17]  
ROBERTS JAG, 2002, REVERSIBILITY ORIENT
[18]  
VANDENESSEN A, 1995, AUTOMORPHISMS OF AFFINE SPACES, P3
[19]   GROWTH AND INTEGRABILITY IN THE DYNAMICS OF MAPPINGS [J].
VESELOV, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) :181-193
[20]   INTEGRABLE MAPS [J].
VESELOV, AP .
RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (05) :1-51