Symmetries and reversing symmetries of area-preserving polynomial mappings in generalised standard form

被引:9
作者
Roberts, JAG [1 ]
Baake, M
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
[3] Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
关键词
polynomial automorphism; symmetry; reversing symmetry;
D O I
10.1016/S0378-4371(02)01321-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the symmetries and reversing symmetries within G, the group of real planar polynomial automorphisms, of area-preserving nonlinear polynomial maps L in generalised standard form L: x' = x + p(1)(y), y' = y + p(2)(x'), where p(1) and p(2) are polynomials. We do this by using the amalgamated free product structure of G. Our results lead to normal forms for polynomial maps in generalised standard form and to a classification of the group structures of the reversing symmetry groups for such maps. (C) 2002 Michael Baake. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 21 条
[1]   Reversing symmetry group of Gl(2,Z) and PGl(2,Z) matrices with connections to cat maps and trace maps [J].
Baake, M ;
Roberts, JAG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05) :1549-1573
[2]   Symmetries and reversing symmetries of toral automorphisms [J].
Baake, M ;
Roberts, JAG .
NONLINEARITY, 2001, 14 (04) :R1-R24
[3]  
BAAKE M, 2002, REVERSING SYMMETRY G
[4]  
Bedford E., 1998, J GEOM ANAL, V8, P349, DOI [DOI 10.1007/BF02921791, 10.1007/BF02921791]
[5]  
COHEN DE, 1989, COMBINATIONAL THEORY
[6]   Generalized Henon maps: the cubic diffeomorphisms of the plane [J].
Dullin, HR ;
Meiss, JD .
PHYSICA D, 2000, 143 (1-4) :262-289
[7]   DYNAMICAL PROPERTIES OF PLANE POLYNOMIAL AUTOMORPHISMS [J].
FRIEDLAND, S ;
MILNOR, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :67-99
[8]   Inverse conjugacies and reversing symmetry groups [J].
Goodson, GR .
AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (01) :19-26
[9]   NUMERICAL STUDY OF QUADRATIC AREA-PRESERVING MAPPINGS [J].
HENON, M .
QUARTERLY OF APPLIED MATHEMATICS, 1969, 27 (03) :291-&
[10]  
JUNG HWE, 1942, J REINE ANGEW MATH, V184, P161, DOI DOI 10.1515/CRLL.1942.184.161