Dihydromyricetin Alleviates High Glucose-Induced Oxidative Stress and Apoptosis in Human Retinal Pigment Epithelial Cells by Downregulating miR-34a Expression

被引:20
|
作者
Li, Wenjun [1 ,2 ]
Xiao, Hongxia [3 ]
机构
[1] Tianjin Med Univ, Chu Hsien Mem Hosp 1, Tianjin Key Lab Metab Dis, Dept Ophthalmol,NHC Key Lab Hormones & Dev, Tianjin 300134, Peoples R China
[2] Tianjin Med Univ, Tianjin Inst Endocrinol, Tianjin 300134, Peoples R China
[3] Jingmen 2 Peoples Hosp, Dept Ophthalmol, Jingmen 448000, Peoples R China
关键词
diabetic retinopathy; high glucose; oxidative stress; dihydromyricetin; apoptosis; DIABETIC-RETINOPATHY; INFLAMMATION; DAMAGE; ACCUMULATION; PATHWAY; ARPE-19;
D O I
10.2147/DMSO.S290633
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes mellitus, which leads to neuronal and vascular dysfunction in the retina with a final outcome of complete loss of vision. The aim of the present study was to investigate the effects of dihydromyricetin (DHM), a natural flavanol compound, on diabetic retinopathy (DR) and identify its potential mechanisms. Methods: Retinal pigment epithelial cell line (ARPE-19) treated with high glucose (HG) was used to simulate the DR model in vitro. After treatment with different concentrations of DHM, the cell viability, production of reactive oxygen species (ROS) and the levels of oxidative stress-related markers in the in vitro model were detected using corresponding kits. Cell apoptosis was determined using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining, and the expression of apoptotic proteins was examined using Western blot analysis. Subsequently, microRNA (miR)-34a expression was measured by reverse transcription-quantitative PCR (RT-qPCR). The levels of oxidative stress and apoptosis were evaluated after miR-34a overexpression. Results: Results indicated that DHM dose-dependently elevated the decreased cell viability induced by HG. Moreover, the content of ROS was significantly reduced in HG-stimulated ARPE-19 cells, accompanied by enhanced activities of superoxide dismutase (SOD) and catalase (CAT) antioxidases, as well as concentration of glutathione (GSH). Furthermore, remarkably decreased apoptosis of ARPE-19 cells induced by HG was observed following DHM intervention. Importantly, HG stimulation notably upregulated miR-34a expression, which was reversed by DHM treatment. Importantly, the inhibitory effects of DHM on HG-induced oxidative stress and apoptosis of ARPE-19 cells were restored following miR-34a overexpression. Conclusion: Taken together, this work demonstrated that DHM exerts protective effects on HG-induced oxidative stress and apoptotic damage in ARPE-19 cells via inhibition of miR-34a expression, providing a promising therapeutic agent for the treatment of DR.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 50 条
  • [31] High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression
    Farnoodian, Mitra
    Halbach, Caroline
    Slinger, Cassidy
    Pattnaik, Bikash R.
    Sorenson, Christine M.
    Sheibani, Nader
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2016, 311 (03): : C418 - C436
  • [32] Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis
    Hu, Xin
    Liang, Yuanyuan
    Zhao, Bo
    Wang, Yongyi
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4514 - 4522
  • [33] Protective Effect of Clusterin from Oxidative Stress-Induced Apoptosis in Human Retinal Pigment Epithelial Cells
    Kim, Jeong Hun
    Kim, Jin Hyoung
    Jun, Hyoung Oh
    Yu, Young Suk
    Min, Bon Hong
    Park, Kyu Hyung
    Kim, Kyu-Won
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (01) : 561 - 566
  • [34] Vaspin Attenuates High Glucose-Induced Inflammation and Apoptosis in Human Retinal Pigment Epithelium Cell
    Wang, Chunfang
    Xie, Tianchun
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2020, 10 (01) : 98 - 104
  • [35] Burdock Fructooligosaccharide Attenuates High Glucose-Induced Apoptosis and Oxidative Stress Injury in Renal Tubular Epithelial Cells
    Ding, Mengru
    Tang, Zhiyan
    Liu, Wei
    Shao, Taili
    Yuan, Pingchuan
    Chen, Kaoshan
    Zhou, Yuyan
    Han, Jun
    Zhang, Jing
    Wang, Guodong
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [36] High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases
    Allen, DA
    Harwood, SM
    Varagunam, M
    Raftery, MJ
    Yaqoob, MM
    FASEB JOURNAL, 2003, 17 (03): : 908 - +
  • [37] Proanthocyanidins attenuate the high glucose-induced damage of retinal pigment epithelial cells by attenuating oxidative stress and inhibiting activation of the NLRP3 inflammasome
    Li, Hongsong
    Li, Rong
    Wang, Lijun
    Liao, Dingying
    Zhang, Wenyi
    Wang, Jianming
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (09)
  • [38] LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis
    Tong, Ping
    Peng, Qing-Hua
    Gu, Li -Min
    Xie, Wei-Wei
    Li, Wen-Jie
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2019, 107 : 102 - 109
  • [39] Gigantol protects retinal pigment epithelial cells against high glucose-induced apoptosis, oxidative stress and inflammation by inhibiting MTDH-mediated NF-kB signaling pathway
    Chen, You
    Zhao, Tong
    Han, Mengyu
    Chen, Yi
    IMMUNOPHARMACOLOGY AND IMMUNOTOXICOLOGY, 2024, 46 (01) : 33 - 39
  • [40] Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium
    Chen, Qingqiu
    Tang, Li
    Xin, Guang
    Li, Shiyi
    Ma, Limei
    Xu, Yao
    Zhuang, Manjiao
    Xiong, Qiuyang
    Wei, Zeliang
    Xing, Zhihua
    Niu, Hai
    Huang, Wen
    FREE RADICAL BIOLOGY AND MEDICINE, 2019, 130 : 48 - 58