Proof-of-concept of real-world quantum key distribution with quantum frames

被引:59
作者
Lucio-Martinez, I. [1 ,2 ]
Chan, P. [3 ,4 ]
Mo, X. [1 ,2 ]
Hosier, S. [5 ,6 ]
Tittel, W. [1 ,2 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Adv Technol Informat Proc Syst Lab, Calgary, AB T2N 1N4, Canada
[4] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
[5] So Alberta Inst Technol, Appl Res & Innovat Serv, Calgary, AB T2M 0L4, Canada
[6] So Alberta Inst Technol, Sch Informat & Commun Technol, Calgary, AB T2M 0L4, Canada
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
DISTRIBUTION-SYSTEM; SECURITY;
D O I
10.1088/1367-2630/11/9/095001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a fibre-based quantum key distribution system, which employs polarization qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical framing information via sequences of strong laser pulses that precede the quantum data. This allows synchronization, sender and receiver identification and compensation of time-varying birefringence in the communication channel. In addition, this method also provides a platform to communicate implementation specific information such as encoding and protocol in view of future optical quantum networks. We demonstrate in a long-term (37 h) proof-of-principle study that polarization information encoded in the classical control frames can indeed be used to stabilize unwanted qubit transformation in the quantum channel. All optical elements in our setup can be operated at Gbps rates, which is a first requirement for a future system delivering secret keys at Mbps. In order to remove another bottleneck towards a high rate system, we investigate forward error correction based on low-density parity-check codes.
引用
收藏
页数:26
相关论文
共 43 条
  • [1] Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
  • [2] Bennett C.H., 1984, P IEEE INT C COMP SY, V175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Generalized privacy amplification
    Bennett, CH
    Brassard, G
    Crepeau, C
    Maurer, UM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1915 - 1923
  • [4] QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES
    BENNETT, CH
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3121 - 3124
  • [5] Limitations on practical quantum cryptography
    Brassard, G
    Lütkenhaus, N
    Mor, T
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (06) : 1330 - 1333
  • [6] Brassard G., 1994, LECT NOTES COMPUTER, V765, P410, DOI [10.1007/3-540-48285-7_35, DOI 10.1007/3-540-48285-7_35]
  • [7] Quantum repeaters:: The role of imperfect local operations in quantum communication
    Briegel, HJ
    Dür, W
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (26) : 5932 - 5935
  • [8] Long-distance quantum communication with atomic ensembles and linear optics
    Duan, LM
    Lukin, MD
    Cirac, JI
    Zoller, P
    [J]. NATURE, 2001, 414 (6862) : 413 - 418
  • [9] Generalized beam-splitting attack in quantum cryptography with dim coherent states
    Dusek, M
    Haderka, O
    Hendrych, M
    [J]. OPTICS COMMUNICATIONS, 1999, 169 (1-6) : 103 - 108
  • [10] Elliott C., 2005, ARXIVQUANTPH0503058