Image super-resolution reconstruction based on feature map attention mechanism

被引:184
|
作者
Chen, Yuantao [1 ,2 ]
Liu, Linwu [1 ,2 ]
Phonevilay, Volachith [1 ,2 ]
Gu, Ke [1 ]
Xia, Runlong [3 ]
Xie, Jingbo [3 ]
Zhang, Qian [4 ]
Yang, Kai [4 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China
[3] Hunan Inst Sci & Tech Informat, Changsha 410001, Hunan, Peoples R China
[4] Hunan ZOOMLION Intelligent Technol Corp Ltd, Dept Elect Prod, Changsha 410005, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution reconstruction; Feature map attention mechanism; Multiple information extraction; Deep learning methods; Multi-scale low-resolution images; ALGORITHM; NETWORK;
D O I
10.1007/s10489-020-02116-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve the issue of low-frequency and high-frequency components from feature maps being treated equally in existing image super-resolution reconstruction methods, the paper proposed an image super-resolution reconstruction method using attention mechanism with feature map to facilitate reconstruction from original low-resolution images to multi-scale super-resolution images. The proposed model consists of a feature extraction block, an information extraction block, and a reconstruction module. Firstly, the extraction block is used to extract useful features from low-resolution images, with multiple information extraction blocks being combined with the feature map attention mechanism and passed between feature channels. Secondly, the interdependence is used to adaptively adjust the channel characteristics to restore more details. Finally, the reconstruction module reforms different scales high-resolution images. The experimental results can demonstrate that the proposed method can effectively improve not only the visual effect of images but also the results on the Set5, Set14, Urban100, and Manga109. The results can demonstrate the proposed method has structurally similarity to the image reconstruction methods. Furthermore, the evaluating indicator of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) has been improved to a certain degree, while the effectiveness of using feature map attention mechanism in image super-resolution reconstruction applications is useful and effective.
引用
收藏
页码:4367 / 4380
页数:14
相关论文
共 50 条
  • [21] Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation
    Huang, Tingsheng
    Wang, Xinjian
    Wang, Chunyang
    Liu, Xuelian
    Yu, Yanqing
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [22] Image Super-resolution Reconstruction Based on Adaptive Fractional Order
    Yu, Jimin
    Yin, Jiajun
    Zhou, Shangbo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5175 - 5180
  • [23] Image super-resolution reconstruction based on adaptive sparse representation
    Xu, Mengxi
    Yang, Yun
    Sun, Quansen
    Wu, Xiaobin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (24):
  • [24] Boosting Regression-Based Single-Image Super-Resolution Reconstruction
    Luo Shuang
    Huang Hui
    Zhang Kaibing
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [25] Weighted Adaptive Image Super-Resolution Scheme Based on Local Fractal Feature and Image Roughness
    Yao, Xunxiang
    Wu, Qiang
    Zhang, Peng
    Bao, Fangxun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1426 - 1441
  • [26] Super-resolution image reconstruction for mobile devices
    Chu, Chung-Hua
    MULTIMEDIA SYSTEMS, 2013, 19 (04) : 315 - 337
  • [27] Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution
    Song, Xibin
    Dai, Yuchao
    Zhou, Dingfu
    Liu, Liu
    Li, Wei
    Li, Hongdong
    Yang, Ruigang
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5630 - 5639
  • [28] From Local to Global: Efficient Dual Attention Mechanism for Single Image Super-Resolution
    Zhang, Pei
    Lam, Edmund Y.
    IEEE ACCESS, 2021, 9 : 114957 - 114964
  • [29] Super-resolution image reconstruction using molecular docking
    Nayak, Rajashree
    Patra, Dipti
    Balabantaray, Bunil Ku
    IET IMAGE PROCESSING, 2020, 14 (12) : 2922 - 2936
  • [30] An Experimental Comparison of Super-resolution Reconstruction for Image Sequences
    Gong Youmin
    Zou Xing
    Guo Yanning
    Dong Zhen
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5044 - 5049