Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control

被引:28
|
作者
Grancharova, Alexandra [1 ]
Johansen, Tor A. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Control & Syst Res, BU-1113 Sofia, Bulgaria
[2] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
关键词
Min-max model predictive control; Multi-parametric programming; l(2)-stability; RECEDING HORIZON CONTROL; MPC; SYSTEMS; STATE; DESIGN; INPUT;
D O I
10.1016/j.automatica.2008.12.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approximate multi-parametric Nonlinear Programming (mp-NLP) approach to explicit solution of feedback min-max NMPC problems for constrained nonlinear systems in the presence of bounded disturbances and/or parameter uncertainties. It is based on an orthogonal search tree structure of the state space partition and consists in constructing a piecewise nonlinear (PWNL) approximation to the optimal sequence of feedback control policies. Conditions guaranteeing the robust stability of the closed-loop system in terms of a finite l(2)-gain are derived. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1134 / 1143
页数:10
相关论文
共 50 条
  • [31] Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings
    ZHAO MinLI Ning LI ShaoYuan Institute of AutomationShanghai Jiao Tong UniversityShanghai China
    Science in China(Series F:Information Sciences), 2009, 52 (07) : 1129 - 1135
  • [32] Networked min-max model predictive control of constrained nonlinear systems with delays and packet dropouts
    Li, Huiping
    Shi, Yang
    INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (04) : 610 - 624
  • [33] Robust Min-Max Model Predictive Vehicle Platooning With Causal Disturbance Feedback
    Zhou, Jianshan
    Tian, Daxin
    Sheng, Zhengguo
    Duan, Xuting
    Qu, Guixian
    Zhao, Dezong
    Cao, Dongpu
    Shen, Xuemin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15878 - 15897
  • [34] A min-max model predictive control for a class of hybrid dynamical systems
    Mukai, M
    Azuma, T
    Kojima, A
    Fujita, M
    2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGS, 2003, : 694 - 699
  • [35] Min-max Model Predictive Control for Biaxial Feed Drive System
    Gao, Yu
    Zhang, Yuanliang
    Chong, Kil To
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 769 - 773
  • [36] Min-max Economic Model Predictive Control Approaches with Guaranteed Performance
    Bayer, Florian A.
    Mueller, Matthias A.
    Allgoewer, Frank
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3210 - 3215
  • [37] Efficient implementation of min-max model predictive control with bounded uncertainties
    Alamo, T
    Ramírez, DR
    Camacho, EF
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, 2002, : 651 - 656
  • [38] Linearized min-max robust model predictive control: Application to the control of a bioprocess
    Benattia, S. E.
    Tebbani, S.
    Dumur, D.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 100 - 120
  • [39] Robust min-max model predictive control of linear systems with constraints
    Zeman, J
    Rohal'-Ilkiv, B
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 930 - 935
  • [40] The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System With Uncertain Disturbances
    Gao, Yu
    Chong, Kil To
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2373 - 2378