Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks

被引:107
作者
Zhang, Zhen [1 ,2 ]
Ding, Hu [1 ]
Zhang, Ye-Wei [2 ]
Chen, Li-Qun [1 ]
机构
[1] Shanghai Univ, Shanghai Key Lab Mech Energy Engn, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200444, Peoples R China
[2] Shenyang Aerosp Univ, Coll Aerosp Engn, Shenyang 110136, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear energy sink; Elastic beam; Vibration suppression; Nonlinear boundary; Inerter; STEADY-STATE DYNAMICS; BUCKLING ANALYSIS; CANTILEVER BEAM; CONVEYING FLUID; RESONANCES; IMPACT;
D O I
10.1007/s10409-021-01062-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear vibration absorbers have been widely used for vibration suppression of elastic structures, but they were usually placed within the structures. However, designing such a vibration damping device within an engineering structure is possibly difficult. In this paper, an inertial nonlinear energy sinks (NES) is mounted on the boundaries of the elastic beam to suppress its vibration. Although this vibration suppression approach is more in line with engineering requirements, it introduces nonlinear oscillators at boundaries. This brings certain difficulties to the structural vibration analysis and the optimal absorber design. An approximate analytical approach for the steady-state response is developed in this work and verified by numerical solutions. The comparison with the uncontrolled system demonstrates the high-efficiency vibration suppression of the inertial NES installed on the boundary. Besides, the optimization of the NES parameters is performed. Resonance amplitude of the elastic structure can be reduced by 98% with the optimized NES. In summary, this paper proposes a novel approach to suppress the bending vibration of elastic structures through boundary NESs. The vibration reduction effect is very significant, and it is more feasible to implement. Therefore, this work is helpful to study the vibration of elastic structures with nonlinear boundaries and to promote the application of nonlinear vibration absorbers.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 50 条
[1]   Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness [J].
Afshin, S. ;
Yas, M. H. .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2020, 41 (05) :785-804
[2]   Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device [J].
Ahmadabadi, Z. Nili ;
Khadem, S. E. .
JOURNAL OF SOUND AND VIBRATION, 2014, 333 (19) :4444-4457
[3]   Feasibility study of using a semiactive electromagnetic friction damper for seismic response control of horizontally curved bridges [J].
Amjadian, Mohsen ;
Agrawal, Anil K. .
STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (04)
[4]   Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow [J].
Blanchard, Antoine ;
Bergman, Lawrence A. ;
Vakakis, Alexander F. .
NONLINEAR DYNAMICS, 2020, 99 (01) :593-609
[5]   Bending analysis of elastically connected Euler-Bernoulli double-beam system using the direct boundary element method [J].
Brito, W. K. F. ;
Maia, C. D. C. D. ;
Mendonca, A., V .
APPLIED MATHEMATICAL MODELLING, 2019, 74 :387-408
[6]   Active control and experiment study of a flexible hub-beam system [J].
Cai, Guoping ;
Teng, Youyou ;
Lim, C. W. .
ACTA MECHANICA SINICA, 2010, 26 (02) :289-298
[7]   Boundary control of a cantilevered flexible beam with point-mass dynamics at the free end [J].
Canbolat, H ;
Dawson, D ;
Rahn, C ;
Vedagarbha, P .
MECHATRONICS, 1998, 8 (02) :163-+
[8]   Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks [J].
Chen, Hong-Yan ;
Mao, Xiao-Ye ;
Ding, Hu ;
Chen, Li-Qun .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 135
[9]   Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks [J].
Chen, J. E. ;
He, W. ;
Zhang, W. ;
Yao, M. H. ;
Liu, J. ;
Sun, M. .
NONLINEAR DYNAMICS, 2018, 91 (02) :885-904
[10]   The Missing Mechanical Circuit Element [J].
Chen, Michael Z. Q. ;
Papageorgiou, Christos ;
Scheibe, Frank ;
Wang, Fu-Cheng ;
Smith, Malcolm C. .
IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2009, 9 (01) :10-26