Perturbation analysis of the generalized Bott-Duff in inverse of L-zero matrices

被引:17
作者
Chen, GL
Liu, GM
Xue, YF [1 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] Shandong Normal Univ, Dept Comp Sci, Jinan 250014, Peoples R China
关键词
generalized B-D inverses; least square solution; L-zero matrix;
D O I
10.1080/0308108031000053602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a subspace of R-n and P-L be the orthogonal projection of R-n onto L. Then for the n x n matrix A, the generalized Bott-Duffin (B-D) inverse A((L))((+)) is given A((L))((+))=P-L(AP(L)+I-P-L)(+). In this article we prove that A((L))((+))=(P(L)AP(L))+ iff ALboolean ANDL(perpendicular to)=0. This result extends the concept so-called the "L-s.p.d" matrix proposed by Chen in his article "The Generalized Bott-Duffin Inverse and its Applications". In the rest part of the article, the perturbation analysis of A((L))((+)) and the least squares solution of the systems Ax+B*y=b, Bx=d are established under certain small perturbation of A.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 9 条
[1]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[2]   ON THE ALGEBRA OF NETWORKS [J].
BOTT, R ;
DUFFIN, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 74 (JAN) :99-109
[3]   Perturbation theory for the generalized Bott-Duffin inverse and its applications [J].
Chen, GL ;
Liu, GM ;
Xue, YF .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 129 (01) :145-155
[4]   Perturbation analysis for the operator equation Tx=b in Banach spaces [J].
Chen, GL ;
Xue, YF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) :107-125
[5]   Perturbation analysis of the least squares solution in Hilbert spaces [J].
Chen, GL ;
Wei, MS ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 :69-80
[6]   The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces [J].
Chen, GL ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :1-6
[7]  
CHEN YL, 1990, LINEAR ALGEBRA APPL, V134, P71
[8]  
Stewart G., 1990, MATRIX PERTURBATION
[9]  
XUE Y, IN PRESS SOME EQUIVA