Existence of periodic solutions for a 2nth-order nonlinear difference equation

被引:34
作者
Cai, Xiaochun [1 ]
Yu, Jianshe
机构
[1] Hunan Univ, Coll Stat, Hunan 410079, Peoples R China
[2] Guangzhou Univ, Coll Math & Informat Sci, Guangzhou 510405, Guangdong, Peoples R China
关键词
nonlinear difference equations; periodic solutions; critical points;
D O I
10.1016/j.jmaa.2006.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider the 2nth-order difference equation Delta(n)(r(t-n)Delta n(t-n)(x)) + f(t, x(t)) = 0, n is an element of Z(3), t is an element of Z, where f : Z x R -> R is a continuous function in the second variable, f (t + T, z) = f (t, z) for all (t, Z) is an element of Z x R, r(t+T), = r(t) for all t is an element of Z, and T a given positive integer. By the Linking Theorem, some new criteria are obtained for the existence and multiplicity of periodic solutions of the above equation. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 10 条
  • [1] THE (N,N)-DISCONJUGACY OF A 2ND-ORDER LINEAR DIFFERENCE EQUATION
    AHLBRANDT, CD
    PETERSON, A
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (1-3) : 1 - 9
  • [2] [Anonymous], 1989, CRITICAL POINT THEOR
  • [3] CHANG KC, 1988, FUNCTIONAL ANLA
  • [4] The existence of periodic and subharmonic solutions of subquadratic second order difference equations
    Guo, ZM
    Yu, JS
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 419 - 430
  • [5] KOCIC VL, 1993, GLOBAL BEHAV NONLINE
  • [6] PEIL T, 1994, ROCKY MT J MATH, V24, P233
  • [7] Rabinowitz P. H., 1986, CBMS REG C SER MATH, V65
  • [8] [No title captured]
  • [9] [No title captured]
  • [10] [No title captured]