Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree

被引:75
作者
Carr, Hamish [1 ]
Snoeyink, Jack [2 ]
van de Panne, Michiel [3 ]
机构
[1] Univ Coll Dublin, Dept Comp Sci, Dublin 2, Ireland
[2] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1W5, Canada
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2010年 / 43卷 / 01期
关键词
Morse theory; Contour trees; Visualization; Isosurfaces;
D O I
10.1016/j.comgeo.2006.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The contour tree is an abstraction of a scalar field that encodes the nesting relationships of isosurfaces. We show how to use the contour tree to represent individual contours of a scalar field. how to simplify both the contour tree and the topology of the scalar field, how to compute and store geometric properties for all possible contours in the contour tree, and how to use the simplified contour tree as an interface for exploratory visualization. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 58
页数:17
相关论文
共 45 条
[1]  
[Anonymous], 2002, Translations of Mathematical Monographs
[2]  
[Anonymous], 1963, MORSE THEORY AM 51, DOI [10.1515/9781400881802, DOI 10.1515/9781400881802]
[3]   The contour spectrum [J].
Bajaj, CL ;
Pascucci, V ;
Schikore, DR .
VISUALIZATION '97 - PROCEEDINGS, 1997, :167-+
[4]  
Boyell RL, 1963, P 1963 FALL JOINT CO, P445, DOI DOI 10.1145/1463822.1463869
[5]   A topological hierarchy for functions on triangulated surfaces [J].
Bremer, PT ;
Edelsbrunner, H ;
Hamann, B ;
Pascucci, V .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (04) :385-396
[6]   Simplifying flexible isosurfaces using local geometric measures [J].
Carr, H ;
Snoeyink, J ;
van de Panne, M .
IEEE VISUALIZATION 2004, PROCEEEDINGS, 2004, :497-504
[7]   Computing contour trees in all dimensions [J].
Carr, H ;
Snoeyink, J ;
Axen, U .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 24 (02) :75-94
[8]  
CARR H, 2003, P EUR VIS S 2003, P49
[9]   Progressive simplification of tetrahedral meshes preserving all isosurface topologies [J].
Chiang, Y ;
Lu, X .
COMPUTER GRAPHICS FORUM, 2003, 22 (03) :493-504
[10]   Simple and optimal output-sensitive construction of contour trees using monotone paths [J].
Chiang, YJ ;
Lenz, T ;
Lu, X ;
Rote, G .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (02) :165-195