Generalized Hardy operators and normalizing measures

被引:21
作者
Chen, TL [1 ]
Sinnamon, G [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
Hardy inequality; weight; normalizing measure;
D O I
10.1080/1025583021000022522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions on the weight nu and the measure sigma for the operator Kf(s) = integral(a(s))(b(s))k(s,y)f(y)dy to be bounded from L-nu(p)[0,infinity) to L-sigma(q)(S) are given. Here a(s) and b(s) are similarly ordered functions and k(s,y) satisfies a modified GHO condition. Nearly block diagonal decompositions of positive operators are introduced as is the concept of a normalizing measure. An application is made to estimates for the remainder in a Taylor approximation.
引用
收藏
页码:829 / 866
页数:38
相关论文
共 12 条
[1]   WEIGHTED NORM INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) :135-141
[2]   WEIGHTED L-PHI INTEGRAL-INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
STUDIA MATHEMATICA, 1994, 110 (01) :35-52
[3]   The generalized hardy operator with kernel and variable integral limits in Banach function spaces [J].
Gogatishvili, A ;
Lang, J .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (01) :1-16
[4]  
Heinig HP, 1998, STUD MATH, V129, P157
[5]  
LOMAKINA E., 1998, PUBL MAT, V42, P165
[6]  
MALIGRANDA L, 1989, PUBL NEDERL AKAD WET, V51, P323
[7]  
OINAROV R, 1991, DOKL AKAD NAUK SSSR+, V319, P1076
[8]  
OINAROV R, 1994, P STEKLOV I MATH, V3, P205
[9]  
Opic B., 1990, HARDY TYPE INEQUALIT
[10]  
Royden H. L., 1968, REAL ANAL