Snowpack density modeling is the primary source of uncertainty when mapping basin-wide SWE with lidar

被引:54
作者
Raleigh, Mark S. [1 ,2 ,3 ]
Small, Eric E. [1 ]
机构
[1] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA
[2] Univ Colorado, CIRES, Boulder, CO 80309 USA
[3] Univ Colorado, NSIDC, Boulder, CO 80309 USA
关键词
WESTERN UNITED-STATES; RESIDUE-SOIL SYSTEM; WATER EQUIVALENT; SIERRA-NEVADA; SIMULTANEOUS HEAT; ENERGY EXCHANGE; ALPINE TERRAIN; SEASONAL SNOW; LOW-COST; DEPTH;
D O I
10.1002/2016GL071999
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Lidar-measured snow depth and model-estimated snow density can be combined to map snow water equivalent (SWE). This approach has the potential to transform research and operations in snow-dominated regions, but sources of uncertainty need quantification. We compared relative uncertainty contributions from lidar depth measurement and density modeling to SWE estimation, utilizing lidar data from the Tuolumne Basin (California). We found a density uncertainty of 0.048g cm(-3) by comparing output from four models. For typical lidar depth uncertainty (8cm), density estimation was the dominant source of SWE uncertainty when snow exceeded 60cm depth, representing >70% of snow cover and 90% of SWE volume throughout the basin in both 2014 and 2016. Density uncertainty accounts for 75% of the SWE uncertainty for a broader range of snowpack characteristics, as measured at SNOTEL stations throughout the western U.S. Reducing density uncertainty is essential for improved SWE mapping with lidar.
引用
收藏
页码:3700 / 3709
页数:10
相关论文
共 63 条
[21]  
FLERCHINGER GN, 1989, T ASAE, V32, P573, DOI 10.13031/2013.31041
[22]   Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment [J].
Gruenewald, T. ;
Schirmer, M. ;
Mott, R. ;
Lehning, M. .
CRYOSPHERE, 2010, 4 (02) :215-225
[23]   Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale [J].
Gruenewald, Thomas ;
Lehning, Michael .
HYDROLOGICAL PROCESSES, 2015, 29 (07) :1717-1728
[24]   LiDAR-derived snowpack data sets from mixed conifer forests across the Western United States [J].
Harpold, A. A. ;
Guo, Q. ;
Molotch, N. ;
Brooks, P. D. ;
Bales, R. ;
Fernandez-Diaz, J. C. ;
Musselman, K. N. ;
Swetnam, T. L. ;
Kirchner, P. ;
Meadows, M. W. ;
Flanagan, J. ;
Lucas, R. .
WATER RESOURCES RESEARCH, 2014, 50 (03) :2749-2755
[25]   Snow Depth Retrieval with UAS Using Photogrammetric Techniques [J].
Jagt, Benjamin Vander ;
Lucieer, Arko ;
Wallace, Luke ;
Turner, Darren ;
Durand, Michael .
GEOSCIENCES, 2015, 5 (03) :264-285
[26]   Estimating the snow water equivalent from snow depth measurements in the Swiss Alps [J].
Jonas, T. ;
Marty, C. ;
Magnusson, J. .
JOURNAL OF HYDROLOGY, 2009, 378 (1-2) :161-167
[27]  
Jordan R., 1991, 9116 US ARM COL RES, P58
[28]   Design and performance of a wireless sensor network for catchment-scale snow and soil moisture measurements [J].
Kerkez, Branko ;
Glaser, Steven D. ;
Bales, Roger C. ;
Meadows, Matthew W. .
WATER RESOURCES RESEARCH, 2012, 48
[29]   Measurement of the physical properties of the snowpack [J].
Kinar, N. J. ;
Pomeroy, J. W. .
REVIEWS OF GEOPHYSICS, 2015, 53 (02) :481-544
[30]   Can we measure snow depth with GPS receivers? [J].
Larson, Kristine M. ;
Gutmann, Ethan D. ;
Zavorotny, Valery U. ;
Braun, John J. ;
Williams, Mark W. ;
Nievinski, Felipe G. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36