A non-equilibrium thermodynamic model for the crack propagation rate

被引:2
|
作者
Haslach, Henry W., Jr. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
关键词
Nonsteady crack propagation; Non-equilibrium thermodynamics; Crack tip temperature; Viscoplasticity; MAXIMUM DISSIPATION; TEMPERATURE RISE; DYNAMIC FRACTURE; TIP; VELOCITY; GROWTH;
D O I
10.1007/s11043-009-9094-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A non-equilibrium thermodynamics-based evolution model describes the nonsteady, crack propagation rate for both brittle fracture and for viscoplastic behavior at the crack tip. This model for dynamic crack propagation under dynamic or quasi-static loading is developed from an energy functions viewpoint and extends a non-equilibrium thermodynamics construction based on a instantaneous maximum dissipation criterion and a thermodynamic relaxation modulus that permits multi-scale modeling. The evolution equations describing the non-equilibrium fracture process are generated from a generalized energy function whose zero gradient manifold gives the assumed quasi-static crack propagation equations. The class of models produced includes the classical Freund model and a modification that is consistent with the experimental maximum crack velocity. In unstable propagation, the non-equilibrium process is repelled from the quasi-static manifold. If the initial state is stable, then the crack growth process approaches the quasi-static manifold and eventually the crack is arrested. An application of the construction gives the craze growth in PMMA. A simple viscoplastic model for metals predicts the change in temperature at the crack tip as the crack grows.
引用
收藏
页码:91 / 110
页数:20
相关论文
共 50 条
  • [41] Non-Equilibrium Thermodynamic Theory of 4-Component Lead-Free Solder
    Suetsugu, Kenichiro
    Yamaguchi, Atsushi
    Matsushige, Kazumi
    Horiuchi, Toshihisa
    MATERIALS TRANSACTIONS, 2009, 50 (02) : 236 - 244
  • [42] A discrete model for non-equilibrium growth under surface diffusion bias
    Das Sarma, S
    Punyindu, P
    SURFACE SCIENCE, 1999, 424 (2-3) : L339 - L346
  • [43] The matrix model, a driven state variables approach to non-equilibrium thermodynamics
    Jongschaap, RJJ
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2001, 96 (1-2) : 63 - 76
  • [44] A Non-equilibrium Approach to Model Dynamic Composite Systems with Interface Transport
    Romo-Hernandez, Aaron
    Dochain, Denis
    Ydstie, B. Erik
    Hudon, Nicolas
    IFAC PAPERSONLINE, 2016, 49 (24): : 76 - 81
  • [45] Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation
    Guo, Zhihao
    Deng, Shuai
    Zhu, Yu
    Zhao, Li
    Yuan, Xiangzhou
    Li, Shuangjun
    Chen, Lijin
    ENERGY, 2020, 208
  • [46] Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering
    Tegze, Gyoergy
    Granasy, Laszlo
    Toth, Gyula I.
    Douglas, Jack F.
    Pusztai, Tamas
    SOFT MATTER, 2011, 7 (05) : 1789 - 1799
  • [47] Thermodynamically consistent, maximum dissipation, time-dependent models for non-equilibrium behavior
    Haslach, Henry W., Jr.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (22-23) : 3964 - 3976
  • [48] Wax deposition rate model for heat and mass coupling of piped waxy crude oil based on non-equilibrium thermodynamics
    Liu, Yang
    Pan, Chenlin
    Cheng, Qinglin
    Wang, Bing
    Wang, Xuxu
    Gan, Yifan
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2018, 39 (02) : 259 - 269
  • [49] A cohesive zone model with rate-sensitivity for fast crack propagation
    Valoroso, Nunziante
    Debruyne, Gilles
    Laverne, Jerome
    MECHANICS RESEARCH COMMUNICATIONS, 2014, 58 : 82 - 87
  • [50] The entropy concept for non-equilibrium states
    Lieb, Elliott H.
    Yngvason, Jakob
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):