A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction

被引:233
作者
Wei, Jing [1 ]
Liang, Yan [1 ]
Hu, Yaoxin [1 ]
Kong, Biao [1 ]
Simon, George P. [2 ]
Zhang, Jin [3 ,4 ]
Jiang, San Ping [3 ,4 ]
Wang, Huanting [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[2] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia
[3] Curtin Univ, Fuels & Energy Technol Inst, Perth, WA 6102, Australia
[4] Curtin Univ, Dept Chem Engn, Perth, WA 6102, Australia
基金
澳大利亚研究理事会;
关键词
biomass; carbon; metal-tannin framework; non-precious metal catalysts; oxygen reduction reaction; METAL-FREE CATALYSTS; POROUS CARBON; DOPED CARBON; MESOPOROUS CARBON; GRAPHITIC LAYERS; NITROGEN; ELECTROCATALYSTS; COMPLEXES; CELLULOSE; HYBRIDS;
D O I
10.1002/anie.201509024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of biomass into valuable carbon composites as efficient non-precious metal oxygen-reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel-cell technology. Herein, a versatile iron-tannin-framework ink coating strategy is developed to fabricate cellulose-derived Fe3C/Fe-NC catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron-tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe-N-C catalysts shows a high onset potential (i.e. 0.98V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mAcm(-2) and 32 mAmg(-1) at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam.
引用
收藏
页码:1355 / 1359
页数:5
相关论文
共 60 条
[1]  
[Anonymous], ANGEW CHEM
[2]  
[Anonymous], 2015, ANGEW CHEM INT EDIT
[3]  
[Anonymous], 2013, ANGEW CHEM INT EDIT
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[6]   Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts [J].
Brun, Nicolas ;
Wohlgemuth, Stephanie A. ;
Osiceanu, Petre ;
Titirici, Magdalena M. .
GREEN CHEMISTRY, 2013, 15 (09) :2514-2524
[7]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[8]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[9]   Metal-Free Catalysts for Oxygen Reduction Reaction [J].
Dai, Liming ;
Xue, Yuhua ;
Qu, Liangti ;
Choi, Hyun-Jung ;
Baek, Jong-Beom .
CHEMICAL REVIEWS, 2015, 115 (11) :4823-4892
[10]   Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications [J].
De, Sudipta ;
Balu, Alina Mariana ;
van der Waal, Jan C. ;
Luque, Rafael .
CHEMCATCHEM, 2015, 7 (11) :1608-1629