Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

被引:68
作者
Gosline, Sara J. C. [1 ]
Gurtan, Allan M. [2 ]
JnBaptiste, Courtney K. [2 ,3 ]
Bosson, Andrew [2 ,3 ]
Milani, Pamela [1 ]
Dalin, Simona [1 ]
Matthews, Bryan J. [1 ]
Yap, Yoon S. [1 ]
Sharp, Phillip A. [2 ,3 ]
Fraenkel, Ernest [1 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
PROTEIN-RNA INTERACTIONS; LET-7; REPRESSES; SEQ DATA; TARGET; ENHANCERS; DISCOVERY; DECREASE; IMPACT; MIRNA;
D O I
10.1016/j.celrep.2015.12.031
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
MicroRNAs (miRNAs) regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq) and CLIP (crosslinking followed by immunoprecipitation) sequencing (CLIP-seq), we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 55 条
[31]   The tumor suppressor microRNA let-7 represses the HMGA2 oncogene [J].
Lee, Yong Sun ;
Dutta, Anindya .
GENES & DEVELOPMENT, 2007, 21 (09) :1025-1030
[32]   Prediction of mammalian microRNA targets [J].
Lewis, BP ;
Shih, IH ;
Jones-Rhoades, MW ;
Bartel, DP ;
Burge, CB .
CELL, 2003, 115 (07) :787-798
[33]   Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J].
Love, Michael I. ;
Huber, Wolfgang ;
Anders, Simon .
GENOME BIOLOGY, 2014, 15 (12)
[34]   MicroRNA expression profiles classify human cancers [J].
Lu, J ;
Getz, G ;
Miska, EA ;
Alvarez-Saavedra, E ;
Lamb, J ;
Peck, D ;
Sweet-Cordero, A ;
Ebet, BL ;
Mak, RH ;
Ferrando, AA ;
Downing, JR ;
Jacks, T ;
Horvitz, HR ;
Golub, TR .
NATURE, 2005, 435 (7043) :834-838
[35]  
MacIsaac KD, 2010, METHODS MOL BIOL, V674, P179, DOI 10.1007/978-1-60761-854-6_11
[36]   Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation [J].
Mayr, Christine ;
Hemann, Michael T. ;
Bartel, David P. .
SCIENCE, 2007, 315 (5818) :1576-1579
[37]   MicroRNAs in Stress Signaling and Human Disease [J].
Mendell, Joshua T. ;
Olson, Eric N. .
CELL, 2012, 148 (06) :1172-1187
[38]   MIRTFnet: Analysis of miRNA Regulated Transcription Factors [J].
Naeem, Haroon ;
Kueffner, Robert ;
Zimmer, Ralf .
PLOS ONE, 2011, 6 (08)
[39]   MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale [J].
Ngoc-Hien Du ;
Arpat, Alaaddin Bulak ;
De Matos, Mara ;
Gatfield, David .
ELIFE, 2014, 3
[40]   NON-CODING RNA MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship [J].
Pasquinelli, Amy E. .
NATURE REVIEWS GENETICS, 2012, 13 (04) :271-282