Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

被引:68
作者
Gosline, Sara J. C. [1 ]
Gurtan, Allan M. [2 ]
JnBaptiste, Courtney K. [2 ,3 ]
Bosson, Andrew [2 ,3 ]
Milani, Pamela [1 ]
Dalin, Simona [1 ]
Matthews, Bryan J. [1 ]
Yap, Yoon S. [1 ]
Sharp, Phillip A. [2 ,3 ]
Fraenkel, Ernest [1 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
PROTEIN-RNA INTERACTIONS; LET-7; REPRESSES; SEQ DATA; TARGET; ENHANCERS; DISCOVERY; DECREASE; IMPACT; MIRNA;
D O I
10.1016/j.celrep.2015.12.031
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
MicroRNAs (miRNAs) regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq) and CLIP (crosslinking followed by immunoprecipitation) sequencing (CLIP-seq), we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 55 条
[1]   Integrative Identification of Deregulated MiRNA/TF-Mediated Gene Regulatory Loops and Networks in Prostate Cancer [J].
Afshar, Ali Sobhi ;
Xu, Joseph ;
Goutsias, John .
PLOS ONE, 2014, 9 (06)
[2]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[3]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[4]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[5]   The NIH Roadmap Epigenomics Mapping Consortium [J].
Bernstein, Bradley E. ;
Stamatoyannopoulos, John A. ;
Costello, Joseph F. ;
Ren, Bing ;
Milosavljevic, Aleksandar ;
Meissner, Alexander ;
Kellis, Manolis ;
Marra, Marco A. ;
Beaudet, Arthur L. ;
Ecker, Joseph R. ;
Farnham, Peggy J. ;
Hirst, Martin ;
Lander, Eric S. ;
Mikkelsen, Tarjei S. ;
Thomson, James A. .
NATURE BIOTECHNOLOGY, 2010, 28 (10) :1045-1048
[6]   MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update) [J].
Bisognin, Andrea ;
Sales, Gabriele ;
Coppe, Alessandro ;
Bortoluzzi, Stefania ;
Romualdi, Chiara .
NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) :W13-W21
[7]   Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition [J].
Bosson, Andrew D. ;
Zamudio, Jesse R. ;
Sharp, Phillip A. .
MOLECULAR CELL, 2014, 56 (03) :347-359
[8]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[9]   An alternative mode of microRNA target recognition [J].
Chi, Sung Wook ;
Hannon, Gregory J. ;
Darnell, Robert B. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (03) :321-U80
[10]   Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps [J].
Chi, Sung Wook ;
Zang, Julie B. ;
Mele, Aldo ;
Darnell, Robert B. .
NATURE, 2009, 460 (7254) :479-486