Small Clique Detection and Approximate Nash Equilibria

被引:0
作者
Minder, Lorenz [1 ]
Vilenchik, Dan [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
来源
APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES | 2009年 / 5687卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, Hazan and Krauthgamer showed [12] that if, for a fixed small epsilon, an epsilon-best epsilon-approximate Nash equilibrium can be found in polynomial time in two-player games, then it is also possible to find a planted clique in G(n, 1/2) of size C log n, where C is a large fixed constant independent of epsilon. In this paper, we extend their result to show that if an epsilon-best epsilon-approximate equilibrium can be efficiently found for arbitrarily small epsilon > 0, then one can detect the presence of a planted clique of size (2 + delta) log n in G(n, 1/2) in polynomial time for arbitrarily small delta > 0. Our result is optimal in the sense that graphs in G(n, 1/2) have cliques of size (2 - o(1)) log n with high probability.
引用
收藏
页码:673 / 685
页数:13
相关论文
共 16 条
  • [1] A spectral technique for coloring random 3-colorable graphs
    Alon, N
    Kahale, N
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (06) : 1733 - 1748
  • [2] Alon N, 1998, RANDOM STRUCT ALGOR, V13, P457, DOI 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO
  • [3] 2-W
  • [4] Alon Noga, 1992, The Probabilistic Method
  • [5] Magnetic properties and Martensite structures of Ni50Mn28Ga22 ferromagnetic shape memory alloy
    Chen, Feng
    Gao, Zhi Y.
    Cai, Wei
    Zhao, Lian C.
    [J]. MATERIALS TRANSACTIONS, 2006, 47 (03) : 612 - 614
  • [6] CONITZER V, 2003, 18 INT JOINT C ART I, P765
  • [7] Daskalakis C., 2006, STOC'06. Proceedings of the 38th Annual ACM Symposium on Theory of Computing, P71, DOI 10.1145/1132516.1132527
  • [8] Feige U, 2002, ANN IEEE CONF COMPUT, P5
  • [9] Feige U., 2007, THEORY COMPUTING, V3, P25, DOI [DOI 10.4086/TOC.2007.V003A002, 10.4086/toc.2007.v003a002]
  • [10] Gilboa I., 1989, Games Econom. Behav, V1, P80, DOI DOI 10.1016/0899-8256(89)90006-7