Kaiser-Bessel basis for particle-mesh interpolation

被引:5
作者
Gao, Xingyu [1 ,2 ,3 ]
Fang, Jun [2 ,3 ]
Wang, Han [2 ,3 ]
机构
[1] Lab Computat Phys, Huayuan Rd 6, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Fenghao East Rd 2, Beijing 100094, Peoples R China
[3] CAEP Software Ctr High Performance Numer Simulat, Huayuan Rd 6, Beijing 100088, Peoples R China
基金
美国国家科学基金会;
关键词
FAST FOURIER-TRANSFORMS; PERIODIC BOUNDARY-CONDITIONS; EWALD SUMS; ELECTROSTATIC SYSTEMS; SIMULATION; SUMMATION; ALGORITHM;
D O I
10.1103/PhysRevE.95.063303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce the Kaiser-Bessel interpolation basis for the particle-mesh interpolation in the fast Ewald method. A reliable a priori error estimate is developed to measure the accuracy of the force computation in correlated charge systems, and is shown to be effective in optimizing the shape parameter of the Kaiser-Bessel basis in terms of accuracy. By comparing the optimized Kaiser-Bessel basis with the traditional B-spline basis, we demonstrate that the former is more accurate than the latter in part of the working parameter space, say, a relatively small real-space cutoff, a relatively small reciprocal space mesh, and a relatively large truncation of basis. In some cases, the Kaiser-Bessel basis is found to be more than one order of magnitude more accurate.
引用
收藏
页数:10
相关论文
共 38 条
  • [1] Comparison of scalable fast methods for long-range interactions
    Arnold, Axel
    Fahrenberger, Florian
    Holm, Christian
    Lenz, Olaf
    Bolten, Matthias
    Dachsel, Holger
    Halver, Rene
    Kabadshow, Ivo
    Gaehler, Franz
    Heber, Frederik
    Iseringhausen, Julian
    Hofmann, Michael
    Pippig, Michael
    Potts, Daniel
    Sutmann, Godehard
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [2] How to Convert SPME to P3M: Influence Functions and Error Estimates
    Ballenegger, V.
    Cerda, J. J.
    Holm, C.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (03) : 936 - 947
  • [3] Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions
    Ballenegger, V.
    Arnold, A.
    Cerda, J. J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09)
  • [4] The optimal P3M algorithm for computing electrostatic energies in periodic systems
    Ballenegger, V.
    Cerda, J. J.
    Lenz, O.
    Holm, Ch.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (03)
  • [5] Staggered Mesh Ewald: An Extension of the Smooth Particle-Mesh Ewald Method Adding Great Versatility
    Cerutti, David S.
    Duke, Robert E.
    Darden, Thomas A.
    Lybrand, Terry P.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (09) : 2322 - 2338
  • [6] Classical Electrostatics for Biomolecular Simulations
    Cisneros, G. Andres
    Karttunen, Mikko
    Ren, Pengyu
    Sagui, Celeste
    [J]. CHEMICAL REVIEWS, 2014, 114 (01) : 779 - 814
  • [7] PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS
    DARDEN, T
    YORK, D
    PEDERSEN, L
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) : 10089 - 10092
  • [8] SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS 2. EQUIVALENCE OF BOUNDARY-CONDITIONS
    DELEEUW, SW
    PERRAM, JW
    SMITH, ER
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752): : 57 - 66
  • [9] SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS .1. LATTICE SUMS AND DIELECTRIC-CONSTANTS
    DELEEUW, SW
    PERRAM, JW
    SMITH, ER
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752): : 27 - 56
  • [10] How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-mesh algorithm
    Deserno, M
    Holm, C
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) : 7694 - 7701