From Concept to Crystals via Prediction: Multi-Component Organic Cage Pots by Social Self-Sorting

被引:58
作者
Greenaway, Rebecca L. [1 ]
Santolini, Valentina [2 ]
Pulido, Angeles [3 ,4 ]
Little, Marc A. [1 ]
Alston, Ben M. [1 ]
Briggs, Michael E. [1 ]
Day, Graeme M. [3 ]
Cooper, Andrew, I [1 ]
Jelfs, Kim E. [2 ]
机构
[1] Univ Liverpool, Dept Chem & Mat Innovat Factory, 51 Oxford St, Liverpool, Merseyside, England
[2] Imperial Coll London, Mol Sci Res Hub, Dept Chem, White City Campus,Wood Lane, London W12 0BZ, England
[3] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
[4] Cambridge Crystallog Data Ctr, 12 Union Rd, Cambridge CB2 1EZ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
crystal engineering; crystal structure prediction; molecular design; porous organic cages; self-sorting; MOLECULES; LANDSCAPES; GASES;
D O I
10.1002/anie.201909237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe the a priori computational prediction and realization of multi-component cage pots, starting with molecular predictions based on candidate precursors through to crystal structure prediction and synthesis using robotic screening. The molecules were formed by the social self-sorting of a tri-topic aldehyde with both a tri-topic amine and di-topic amine, without using orthogonal reactivity or precursors of the same topicity. Crystal structure prediction suggested a rich polymorphic landscape, where there was an overall preference for chiral recognition to form heterochiral rather than homochiral packings, with heterochiral pairs being more likely to pack window-to-window to form two-component capsules. These crystal packing preferences were then observed in experimental crystal structures.
引用
收藏
页码:16275 / 16281
页数:7
相关论文
共 44 条
[1]   Molecular Marriage through Partner Preferences in Covalent Cage Formation and Cage-to-Cage Transformation [J].
Acharyya, Koushik ;
Mukherjee, Sandip ;
Mukherjee, Partha Sarathi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) :554-557
[2]   Chiral Self-Sorting of [2+3] Salicylimine Cage Compounds [J].
Beaudoin, Daniel ;
Rominger, Frank ;
Mastalerz, Michael .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (05) :1244-1248
[3]   Computational discovery of a large-imine-cage-based porous molecular material and its application in water desalination [J].
Bernabei, Marco ;
Perez Soto, Raul ;
Gomez Garcia, Ismael ;
Haranczyk, Maciej .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :912-920
[4]   In silico design and assembly of cage molecules into porous molecular materials [J].
Bernabei, Marco ;
Perez-Soto, Raul ;
Gomez Garcia, Ismael ;
Haranczyk, Maciej .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (06) :942-950
[5]  
Beuerle F., 2018, ANGEW CHEM, V130, P4942
[6]   Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds [J].
Beuerle, Florian ;
Gole, Bappaditya .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) :4850-4878
[7]   Shape Prediction for Supramolecular Organic Nanostructures: [4+4] Macrocyclic Tetrapods [J].
Briggs, Michael E. ;
Jells, Kim E. ;
Chong, Samantha Y. ;
Lester, Catherine ;
Schmidtmann, Marc ;
Adams, Dave J. ;
Cooper, Andrew I. .
CRYSTAL GROWTH & DESIGN, 2013, 13 (11) :4993-5000
[8]  
Chen L, 2014, NAT MATER, V13, P954, DOI [10.1038/NMAT4035, 10.1038/nmat4035]
[9]   Synthesis and Applications of Porous Organic Cages [J].
Evans, Jack D. ;
Sumby, Christopher J. ;
Doonan, Christian J. .
CHEMISTRY LETTERS, 2015, 44 (05) :582-588
[10]   High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis [J].
Greenaway, Rl ;
Santolini, V ;
Bennison, M. J. ;
Alston, B. M. ;
Pugh, C. J. ;
Little, M. A. ;
Miklitz, M. ;
Eden-Rumps, E. G. B. ;
Clowes, R. ;
Shakil, A. ;
Cuthbertson, H. J. ;
Armstrong, H. ;
Briggs, M. E. ;
Jelfs, K. E. ;
Cooper, A., I .
NATURE COMMUNICATIONS, 2018, 9