The limit spectral graph in semiclassical approximation for the Sturm-Liouville problem with complex polynomial potential

被引:6
作者
Tumanov, S. N. [1 ]
Shkalikov, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Mech & Math Fac, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
DOKLADY Mathematic; Semiclassical Approximation; Base Domain; Liouville Problem; Point Complex;
D O I
10.1134/S106456241506037X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The limit behavior of the discrete spectrum of the Sturm-Liouville problem whose potential is a polynomial with complex coefficients on an interval, on a half-axis, and on the entire axis is studied. It is shown that, at large parameter values, the eigenvalues are concentrated along the so-called limit spectral graph; the curves forming this graph are classified. Asymptotics of eigenvalues along curves of various types in the graph are calculated.
引用
收藏
页码:773 / 777
页数:5
相关论文
共 13 条
  • [1] Eremenko A, 2011, MOSC MATH J, V11, P473
  • [2] Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrodinger Operator with Complex Potential
    Esina, A. I.
    Shafarevich, A. I.
    [J]. MATHEMATICAL NOTES, 2010, 88 (1-2) : 209 - 227
  • [3] Evgrafov M.A., 1966, RUSSIAN MATH SURVEYS, V21, P1, DOI 10.1070/RM1966v021n01ABEH004145
  • [4] Fedoryuk M. V., 1968, ADDITION 1 WASOW ASY
  • [5] Fedoryuk M. V., 1965, IZV AKAD NAUK SSSR M, V29, P645
  • [6] Fedoryuk M.V., 1983, ASYMPTOTIC METHODS L
  • [7] HEADING J, 1962, INTRO PHASE INTEGRAL
  • [8] Semiclassical approximation for a nonself-adjoint Sturm-Liouville problem with a parabolic potential
    Pokotilo, V. I.
    Shkalikov, A. A.
    [J]. MATHEMATICAL NOTES, 2009, 86 (3-4) : 442 - 446
  • [9] Shkalikov A. A., 2004, J. Math. Sci, V124, P5417, DOI DOI 10.1023/B:JOTH.0000047362.09147.C7
  • [10] Shkalikov A. A., 2002, ARXIVMATHPH0212074V1