Error analysis in Fourier methods for option pricing

被引:1
作者
Crocce, Fabian [1 ,2 ]
Happola, Juho [1 ]
Kiessling, Jonas
Tempone, Raul [1 ]
机构
[1] 4700 King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div CEMSE, Bldg 1, Thuwal 239556900, Saudi Arabia
[2] Univ Republica, Fac Ingn, Ave Julio Herrera & Reissig 565, Montevideo 11200, Uruguay
关键词
European options; Fourier methods; error analysis; trapezoid quadrature; Levy processes; BARRIER OPTIONS; LEVY PROCESSES; STOCHASTIC VOLATILITY; RETURNS; MODELS;
D O I
10.21314/JCF.2016.327
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We provide a bound for the error committed when using a Fourier method to price European options, when the underlying follows an exponential Levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE). Applying a Fourier transformation to the PIDE yields an ordinary differential equation (ODE) that can be solved analytically in terms of the characteristic exponent of the Levy process. Then, a numerical inverse Fourier transform allows us to obtain the option price. We present a bound for the error and use this bound to set the parameters for the numerical method. We analyze the properties of the bound and demonstrate the minimization of the bound to select parameters for a numerical Fourier transformation method in order to solve the option price efficiently.
引用
收藏
页码:53 / 82
页数:30
相关论文
共 38 条
[1]   Numerical valuation of options with jumps in the underlying [J].
Almendral, A ;
Oosterlee, CW .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (01) :1-18
[2]  
Andersen L., 2000, Review of derivatives research, V4, P231
[3]  
Applebaum D., 2004, CAMBRIDGE STUDIES AD, V93
[4]   Normal inverse Gaussian distributions and stochastic volatility modelling [J].
BarndorffNielsen, OE .
SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) :1-13
[5]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[6]  
Boyarchenko S, 2002, ANN APPL PROBAB, V12, P1261
[7]  
Boyarchenko S., 2011, 1846633 SOC SCI RES
[8]   Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory [J].
Briani, M ;
La Chioma, C ;
Natalini, R .
NUMERISCHE MATHEMATIK, 2004, 98 (04) :607-646
[9]   Stochastic volatility for Levy processes [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
MATHEMATICAL FINANCE, 2003, 13 (03) :345-382
[10]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332