While most proofs of the Weil bound on one-variable Kloosterman sums over finite fields are carried out in all characteristics, the original proof of this bound, by Weil, assumes the characteristic is odd. We show how to make Weil's argument work in even characteristic, for both ordinary Kloosterman sums and sums twisted by a multiplicative character. (C) 2002 Elsevier Science (USA). All rights reserved.
机构:
Univ Rouen Normandie, Lab Math Raphael Salem, St Etienne Du Rouvray, FranceUniv Rouen Normandie, Lab Math Raphael Salem, St Etienne Du Rouvray, France
Abdalaoui, El
Shparlinski, Igor E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, AustraliaUniv Rouen Normandie, Lab Math Raphael Salem, St Etienne Du Rouvray, France
Shparlinski, Igor E.
Steiner, Raphael S.
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Dept Math, Zurich, SwitzerlandUniv Rouen Normandie, Lab Math Raphael Salem, St Etienne Du Rouvray, France
机构:
Northwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian, Shaanxi, Peoples R ChinaNorthwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian, Shaanxi, Peoples R China
Jing, Mengyao
Liu, Huaning
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian, Shaanxi, Peoples R ChinaNorthwest Univ, Res Ctr Number Theory & Its Applicat, Sch Math, Xian, Shaanxi, Peoples R China