One-dimensional stochastic Burgers equation driven by Levy processes

被引:61
作者
Dong, Z. [1 ]
Xu, T. G. [1 ]
机构
[1] Acad Sinica, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Burgers equation; Levy process; Q-Wiener process; strong solution; weak solution; mild solution; invariant measure;
D O I
10.1016/j.jfa.2006.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we proved the global existence and uniqueness of the strong, weak and mild solutions for one-dimensional Burgers equation perturbed by a Poisson form process, a Poisson form and Q-Wiener process with the Dirichlet bounded condition. We also proved the existence of the invariant measure of these models. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 678
页数:48
相关论文
共 16 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]   THE STOCHASTIC BURGERS-EQUATION [J].
BERTINI, L ;
CANCRINI, N ;
JONALASINIO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :211-232
[3]   KARHUNEN-LOEVE EXPANSION OF BURGERS MODEL OF TURBULENCE [J].
CHAMBERS, DH ;
ADRIAN, RJ ;
MOIN, P ;
STEWART, DS ;
SUNG, HJ .
PHYSICS OF FLUIDS, 1988, 31 (09) :2573-2582
[4]  
Da Prato G., 1994, NODEA-NONLINEAR DIFF, V1, P389
[5]  
Da Prato G, 1996, ERGODICITY INFINITE
[6]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[7]  
Flandoli F., 1994, NODEA-NONLINEAR DIFF, V1, P403
[8]   Genealogy of shocks in Burgers turbulence with white noise initial velocity [J].
Giraud C. .
Communications in Mathematical Physics, 2001, 223 (1) :67-86
[9]   THE PARTIAL DIFFERENTIAL EQUATION UT+UUX=MU-XX [J].
HOPF, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (03) :201-230
[10]  
Khanin WEK, 2000, ANN MATH, V151, P877