Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation

被引:109
作者
Zhao, PF
Qin, MZ
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100080, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 18期
关键词
D O I
10.1088/0305-4470/33/18/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multisymplectic structure of the KdV equation is presented directly from the variational principle. From the numerical view point, we give a multisymplectic twelve-points scheme which is equivalent to the multisymplectic Preissmann scheme. Finally, we test the twelve-points scheme on solitary waves over long time intervals.
引用
收藏
页码:3613 / 3626
页数:14
相关论文
共 17 条
[1]  
Abbott M.B., 1989, COMPUTATIONAL FLUID
[2]   Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry [J].
Bridges, TJ ;
Derks, G .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1987) :2427-2469
[3]  
BRIDGES TJ, 1997, P CAMB PHIL SOC, V121
[4]  
BRIDGES TJ, 1999, MULTISYMPLECTIC INTE
[5]  
Drazin P.G., 1989, SOLITONS INTRO
[6]  
FENG K, 1987, LECT NOTES MATH, V1297, P1
[7]  
GOTAY MJ, NATO ADV SCI I SER C, V250, P295
[8]  
LI CW, 1988, J COMPUT MATH, V6, P164
[9]   Multisymplectic geometry, variational integrators, and nonlinear PDEs [J].
Marsden, JE ;
Patrick, GW ;
Shkoller, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) :351-395
[10]  
MARSDEN JE, 1999, P CAMB PHIL SOC, V125