Jordan derivations of alternative rings

被引:9
作者
Macedo Ferreira, Bruno Leonardo [1 ]
Guzzo Jr, Henrique [2 ]
Ferreira, Ruth Nascimento [1 ]
Wei, Feng [3 ]
机构
[1] Fed Technol Univ Parana, Prof Laura Pacheco Bastos Ave 800, BR-85053510 Guarapuava, Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
关键词
Alternative ring; Jordan derivation; ALGEBRAS;
D O I
10.1080/00927872.2019.1659285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a unital alternative ring with nontrivial idempotent and be a Jordan derivation. Then is of the form , where d is a derivation of and delta is a singular Jordan derivation of . Moreover, d and delta are uniquely determined. This extends the main result of Benkovic and Sirovnik's to the case of alternative rings.
引用
收藏
页码:717 / 723
页数:7
相关论文
共 50 条
  • [41] Characterizing Jordan n-Derivations of Unital Rings Containing Idempotents
    Xiaofei Qi
    Zhiling Guo
    Ting Zhang
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 1639 - 1658
  • [42] On certain functional equations related to Jordan triple (θ, φ)-derivations on semiprime rings
    Fosner, Ajda
    Vukman, Joso
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02): : 157 - 165
  • [43] Jordan ε-homomorphisms and Jordan ε-derivations
    Fosner, M
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04): : 595 - 616
  • [44] More on the Generalized (m,n)-Jordan Derivations and Centralizers on Certain Semiprime Rings
    Driss Bennis
    Basudeb Dhara
    Brahim Fahid
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 217 - 224
  • [45] Multiplicative Jordan type higher Derivations of Unital Rings with non trivial Idempotents
    Kawa, Ab Hamid
    Hasan, S. N.
    Wani, Bilal Ahmad
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2023, 14 (01) : 36 - 49
  • [46] Characterizations of Jordan derivations and Jordan homomorphisms
    Li, Jiankui
    Zhou, Jiren
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (02) : 193 - 204
  • [47] Generalized Jordan derivations
    Nakajima, A
    INTERNATIONAL SYMPOSIUM ON RING THEORY, 2001, : 235 - 243
  • [48] Jordan Derivations and Lie Derivations on Path Algebras
    Li, Y.
    Wei, F.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 79 - 92
  • [49] Characterizations of derivations and Jordan derivations on Banach algebras
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2233 - 2239
  • [50] On some functional equation arising from (m, n)-Jordan derivations of prime rings
    Fosner, Maja
    Marcen, Benjamin
    Vukman, Joso
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 133 - 146