A new Numerov-type method for the numerical solution of the Schrodinger equation

被引:115
作者
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Sci Computat Lab, Fac Sci & Technol, Tripolis 22100, Greece
关键词
Numerical solution; Schrodinger equation; Multistep methods; Hybrid methods; P-stability; Phase-lag; Phase-fitted; PREDICTOR-CORRECTOR METHODS; RUNGE-KUTTA METHODS; MINIMAL PHASE-LAG; SYMMETRIC MULTISTEP METHODS; EXPONENTIALLY-FITTED METHOD; FINITE-DIFFERENCE METHOD; HYBRID EXPLICIT METHODS; ALGEBRAIC ORDER METHODS; INITIAL-VALUE PROBLEMS; SYMPLECTIC METHODS;
D O I
10.1007/s10910-009-9553-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present paper we develop a new methodology for the development of efficient numerical methods for the approximate solution of the one-dimensional Schrodinger equation. The new methodology is based on the requirement that the phase-lag and its derivatives to be vanished. The efficiency of the new methodology is proved via error analysis and numerical results.
引用
收藏
页码:981 / 1007
页数:27
相关论文
共 114 条
[91]   Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrodinger equations [J].
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 24 (1-3) :23-37
[92]   A family of P-stable exponentially-fitted methods for the numerical solution of the Schrodinger equation [J].
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 25 (01) :65-84
[93]   RUNGE-KUTTA INTERPOLANTS WITH MINIMAL PHASE-LAG [J].
SIMOS, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (08) :43-49
[94]   Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem [J].
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1997, 21 (04) :359-372
[95]   On finite difference methods for the solution of the Schrodinger equation [J].
Simos, TE ;
Williams, PS .
COMPUTERS & CHEMISTRY, 1999, 23 (06) :513-554
[96]   A FAMILY OF 4-STEP EXPONENTIALLY FITTED PREDICTOR-CORRECTOR METHODS FOR THE NUMERICAL-INTEGRATION OF THE SCHRODINGER-EQUATION [J].
SIMOS, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (03) :337-344
[97]   EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
SIMOS, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (01) :89-94
[98]   RUNGE-KUTTA-NYSTROM INTERPOLANTS FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
SIMOS, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (12) :7-15
[99]   A RUNGE-KUTTA FEHLBERG METHOD WITH PHASE-LAG OF ORDER INFINITY FOR INITIAL-VALUE PROBLEMS WITH OSCILLATING SOLUTION [J].
SIMOS, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (06) :95-101
[100]  
SIMOS TE, 2005, COMPUT LETT, V1, P37