A new Numerov-type method for the numerical solution of the Schrodinger equation

被引:115
作者
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Sci Computat Lab, Fac Sci & Technol, Tripolis 22100, Greece
关键词
Numerical solution; Schrodinger equation; Multistep methods; Hybrid methods; P-stability; Phase-lag; Phase-fitted; PREDICTOR-CORRECTOR METHODS; RUNGE-KUTTA METHODS; MINIMAL PHASE-LAG; SYMMETRIC MULTISTEP METHODS; EXPONENTIALLY-FITTED METHOD; FINITE-DIFFERENCE METHOD; HYBRID EXPLICIT METHODS; ALGEBRAIC ORDER METHODS; INITIAL-VALUE PROBLEMS; SYMPLECTIC METHODS;
D O I
10.1007/s10910-009-9553-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present paper we develop a new methodology for the development of efficient numerical methods for the approximate solution of the one-dimensional Schrodinger equation. The new methodology is based on the requirement that the phase-lag and its derivatives to be vanished. The efficiency of the new methodology is proved via error analysis and numerical results.
引用
收藏
页码:981 / 1007
页数:27
相关论文
共 114 条
[1]  
AMODIO P, 2006, JNAIAM J NUMER ANAL, V1, P5
[2]   A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrodinger equation [J].
Anastassi, Z. A. ;
Simos, T. E. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (01) :79-100
[3]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[4]   Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) :281-293
[5]  
[Anonymous], J NUMER ANAL IND APP
[6]  
[Anonymous], 1977, QUANTUM MECH NONRELA
[7]  
[Anonymous], J NUM ANAL IND APPL
[8]  
[Anonymous], ROYAL SOC CHEM
[9]  
[Anonymous], ADV CHEM PHYS NEW ME
[10]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102