A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian

被引:9
作者
Afrouzi, G. A. [1 ]
Rasouli, S. H. [1 ]
机构
[1] Mazandaran Univ, Dept Math, Fac Basic Sci, Babol Sar, Iran
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2009年 / 16卷 / 06期
关键词
Nonlinear elliptic problem; p-Laplacian; Critical points; Nehari manifold; POSITIVE SOLUTIONS; NEHARI MANIFOLD; CONVEX NONLINEARITIES; UNIQUENESS; EQUATION; CONCAVE;
D O I
10.1007/s00030-009-0031-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, motivated by Wu (J Math Anal Appl 318: 253-270, 2006), and using recent ideas from Brown and Wu ( J Math Anal Appl 337: 1326-1336, 2008), we prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic problem: {-Delta(p)u + m(x) u(p-1) = lambda a(x) u(alpha-1) + b(x) u(beta-1), x is an element of Omega, u = 0, x is an element of partial derivative Omega, Here Delta(p) denotes the p-Laplacian operator defined by Delta(p)z = div (vertical bar del z vertical bar(p-2)del z), p > 2, Omega subset of R-N is a bounded domain with smooth boundary, 2 < beta < p < alpha < p* (p* = pN/N-p if N > p, p* = infinity if N <= p), lambda is an element of R \ {0}, the weight m(x) is a bounded function with parallel to m parallel to(infinity) > 0 and a(x), b(x) are continuous functions which change sign in (Omega) over bar.
引用
收藏
页码:717 / 730
页数:14
相关论文
共 22 条
[1]   A remark on the uniqueness of positive solutions for some Dirichlet problems [J].
Afrouzi, GA ;
Rasouli, SH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) :2773-2777
[2]   On a nonlinear eigenvalue problem in ODE [J].
Afrouzi, GA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) :342-349
[3]   Nehari manifold and existence of positive solutions to a class of quasilinear problems [J].
Alves, CO ;
El Hamidi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) :611-624
[4]   A priori bounds and multiple solutions for superlinear indefinite elliptic problems [J].
Amann, H ;
Lopez-Gomez, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 146 (02) :336-374
[5]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[6]   SOME BOUNDARY-VALUE-PROBLEMS FOR THE BINGHAM MODEL [J].
ATKINSON, C ;
ELALI, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 41 (03) :339-363
[7]  
Binding P.A., 1997, Electron. J. Differ. Equ., V5, P1
[9]   A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function [J].
Brown, K. J. ;
Wu, Tsung-Fang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :1326-1336
[10]  
Brown K.J., 2007, Electron. J. Differ. Equ., V1, P9