Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-Annealed TiO2(B) Electrode

被引:85
作者
Zhang, Wei [1 ]
Cai, Lingfeng [1 ]
Cao, Shengkai [1 ]
Qiao, Liang [1 ]
Zeng, Yi [1 ]
Zhu, Zhiqiang [1 ]
Lv, Zhisheng [1 ]
Xia, Huarong [1 ]
Zhong, Lixiang [1 ]
Zhang, Hongwei [1 ]
Ge, Xiang [1 ]
Wei, Jiaqi [1 ]
Xi, Shibo [2 ]
Du, Yonghua [3 ]
Li, Shuzhou [1 ]
Chen, Xiaodong [1 ,4 ]
机构
[1] Nanyang Technol Univ, Innovat Ctr Flexible Devices iFLEX, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Inst Chem & Engn Sci Inst, 1 Pesek Rd, Singapore 627833, Singapore
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[4] Singapore HUJ Alliance Res & Enterprise, Campus Res Excellence & Technol Enterprise, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
aerobic-annealing; interfacial lattice strain; lithium-ion batteries; oxygen vacancy; pseudocapacitive charge storage; ION RECHARGEABLE BATTERY; PHOTOELECTRON-SPECTROSCOPY; LITHIUM; PERFORMANCE; ANODE; OXIDES; NANOSTRUCTURES; NANOPARTICLES; ABSORPTION; NANOSHEETS;
D O I
10.1002/adma.201906156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen vacancies play crucial roles in defining physical and chemical properties of materials to enhance the performances in electronics, solar cells, catalysis, sensors, and energy conversion and storage. Conventional approaches to incorporate oxygen defects mainly rely on reducing the oxygen partial pressure for the removal of product to change the equilibrium position. However, directly affecting reactants to shift the reaction toward generating oxygen vacancies is lacking and to fill this blank in synthetic methodology is very challenging. Here, a strategy is demonstrated to create oxygen vacancies through making the reaction energetically more favorable via applying interfacial strain on reactants by coating, using TiO2(B) as a model system. Geometrical phase analysis and density functional theory simulations verify that the formation energy of oxygen vacancies is largely decreased under external strain. Benefiting from these, the obtained oxygen-deficient TiO2(B) exhibits impressively high level of capacitive charge storage, e.g., approximate to 53% at 0.5 mV s(-1), far surpassing the approximate to 31% of the unmodified counterpart. Meanwhile, the modified electrode shows significantly enhanced rate capability delivering a capacity of 112 mAh g(-1) at 20 C (approximate to 6.7 A g(-1)), approximate to 30% higher than air-annealed TiO2 and comparable to vacuum-calcined TiO2. This work heralds a new paradigm of mechanical manipulation of materials through interfacial control for rational defect engineering.
引用
收藏
页数:8
相关论文
共 102 条
[1]   Strain-driven oxygen deficiency in multiferroic SrMnO3 thin films [J].
Agrawal, P. ;
Guo, J. ;
Yu, P. ;
Hebert, C. ;
Passerone, D. ;
Erni, R. ;
Rossell, M. D. .
PHYSICAL REVIEW B, 2016, 94 (10)
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[4]   Density-Functional Perturbation Theory for Quasi-Harmonic Calculations [J].
Baroni, Stefano ;
Giannozzi, Paolo ;
Isaev, Eyvaz .
THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 :39-57
[5]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[6]   Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries [J].
Chang, Won Jun ;
Kim, Su Han ;
Hwang, Jiseon ;
Chang, Jinho ;
Yang, Dong Won ;
Kwon, Sun Sang ;
Kim, Jin Tae ;
Lee, Won Woo ;
Lee, Jae Hyung ;
Park, Hyunjung ;
Song, Taeseup ;
Lee, In-Hwan ;
Whang, Dongmok ;
Park, Won Il .
NATURE COMMUNICATIONS, 2018, 9
[7]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[8]   Black titanium dioxide (TiO2) nanomaterials [J].
Chen, Xiaobo ;
Liu, Lei ;
Huang, Fuqiang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1861-1885
[9]   Synthesis of Pseudocapacitive Porous Metal Oxide Nanoclusters Anchored on Graphene for Aqueous Energy Storage Devices with High Energy Density and Long Cycling Stability along with Ultrafast Charging Capability [J].
Choi, Jae Won ;
Ock, Il Woo ;
Kim, Keon-Han ;
Jeong, Hyung Mo ;
Kang, Jeung Ku .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (42)
[10]   Lithium Insertion in Nanostructured TiO2(B) Architectures [J].
Dylla, Anthony G. ;
Henkelman, Graeme ;
Stevenson, Keith J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1104-1112