A hybrid mimetic spectral element method for three-dimensional linear elasticity problems

被引:2
作者
Zhang, Yi [1 ]
Fisser, Joel [1 ]
Gerritsma, Marc [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 HS Delft, Netherlands
关键词
Mimetic spectral element method; Hybridization; Domain decomposition; Variational principle; Lagrange multiplier; De Rham complex; EXTERIOR CALCULUS; CONSTRUCTION; PRINCIPLES; SPACES; FORMS;
D O I
10.1016/j.jcp.2021.110179
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a domain decomposition structure-preserving method based on a hybrid mimetic spectral element method for three-dimensional linear elasticity problems in curvilinear conforming structured meshes. The method is an equilibrium method which satisfies pointwise equilibrium of forces. The domain decomposition is established through hybridization which first allows for an inter-element normal stress discontinuity and then enforces the normal stress continuity using a Lagrange multiplier which turns out to be the displacement in the trace space. Dual basis functions are employed to simplify the discretization and to obtain a higher sparsity. Numerical tests supporting the method are presented. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:20
相关论文
共 46 条
[21]   TRANSFINITE ELEMENT METHODS - BLENDING-FUNCTION INTERPOLATION OVER ARBITRARY CURVED ELEMENT DOMAINS [J].
GORDON, WJ ;
HALL, CA .
NUMERISCHE MATHEMATIK, 1973, 21 (02) :109-129
[22]   Pure equilibrium tetrahedral finite elements for global error estimation by dual analysis [J].
Kempeneers, Martin ;
Debongnie, Jean-Francois ;
Beckers, Pierre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (04) :513-536
[23]   Dual-primal FETI methods for linear elasticity [J].
Klawonn, Axel ;
Widlund, Olof B. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) :1523-1572
[24]   Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution [J].
Kreeft, Jasper ;
Gerritsma, Marc .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 :284-309
[25]   Discrete conservation properties for shallow water flows using mixed mimetic spectral elements [J].
Lee, D. ;
Palha, A. ;
Gerritsma, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 357 :282-304
[26]   Mimetic finite difference method [J].
Lipnikov, Konstantin ;
Manzini, Gianmarco ;
Shashkov, Mikhail .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1163-1227
[27]   Convergence of a substructuring method with Lagrange multipliers [J].
Mandel, J ;
Tezaur, R .
NUMERISCHE MATHEMATIK, 1996, 73 (04) :473-487
[28]   A higher-order equilibrium finite element method [J].
Olesen, K. ;
Gervang, B. ;
Reddy, J. N. ;
Gerritsma, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (12) :1262-1290
[29]   A mimetic spectral element solver for the Grad-Shafranov equation [J].
Palha, A. ;
Koren, B. ;
Felici, F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 :63-93
[30]   Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms [J].
Palha, Artur ;
Rebelo, Pedro Pinto ;
Hiemstra, Rene ;
Kreeft, Jasper ;
Gerritsma, Marc .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1394-1422